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Dear reader,

 Globalization increasingly requires more and more international networking between research 
and development engineers. In response to this, the German Research Association for Drive 
Technology (FVA) launched the first Bearing World conference in 2016. With that inaugural 
meeting, the FVA initiated a very fruitful international dialogue in which researchers and developers 
from universities and bearing manufacturers came together with users and experts from the 
industry. The Bearing World conference usually is held every two years; more than 280 experts 
from 18 countries met at the last Bearing World conference in 2018 in Kaiserslautern, Germany, to 
share the latest research findings in the world of bearings. 

 The Bearing World Journal, which is published annually, serves to foster exchange between 
international experts during non-conference years by featuring peer-reviewed, high-quality 
scientific papers on rolling element bearings as well as plain bearings. As an international expert 
platform for publishing cutting-edge research findings, the journal intends to contribute to 
technological progress in the field of bearings.

    We are now starting to prepare the 2022 edition of Bearing World Journal and are looking 
forward to new contributions from the scientific and industrial communities. We would like to thank 
all authors for their fascinating contributions to Bearing World Journal No. 6.

_ Prof. Dr.-Ing. Gerhard Poll, Initiator, Head of international Scientific Board 
_ Dr.-Ing. Arbogast Grunau, President of the FVA Management Board 
_  Christian Kunze,  Editor-in-chief

Please send the paper you intend to publish in the next issue of the Bearing World 
Journal via e-mail as Word document to FVA (submission@bearingworld.org). 
In addition please attach a PDF document.
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The Weibull Distribution and the Problem of  

Guaranteed Minimum Lifetimes 

Prof.Dr.-Ing.habil. Harald Rosemann IMKT (Leibniz University Hannover)  

Josephine Kelley IMKT (Leibniz University Hannover) 

Prof.Dr.-Ing. Gerhard Poll IMKT (Leibniz University Hannover) 

Abstract 

For service life tests, a shifted Weibull distribution, also known as the translated or three-parameter 

Weibull distribution, is commonly used. The shifted Weibull distribution promises completely fault-

free operation until time 𝑡 = 𝐿0, in other words, in the early stage the process is deterministic. Only after 

this phase does the distribution allow random behavior, i.e. from the time 𝑡 = 𝐿0 on, the process is 

stochastic. This model, which is based on two consecutive time periods of quite different nature, is at 

odds with the idea of a continuously progressing fatigue, wear or decay process as long as there are no 

influences from outside. To replace this arguably inconsistent model, variants of the Weibull distribution 

of purely stochastic nature are proposed and investigated that start with a reduced probability of failure 

before transitioning to normal Weibull behavior.  

1 Introduction  

Materials wear and fatigue, and, as a result, failures occur. Individual failures as a consequence of fa-

tigue or wear occur at unpredictable, statistically distributed times. It is often assumed that the service 

lifetimes are distributed according to the Weibull distribution, as this is the distribution that yields the 

highest target values in parameter estimation using optimization methods such as the maximum likeli-

hood procedure. The original Weibull distribution is defined by two parameters.  

Attempts have been made to develop a modified variant of the Weibull distribution by introducing a 

third parameter in order to describe failure behavior that is initially infrequent. This variant is in constant 

use, which is clear from some of the first entries from an internet search for the term 'Weibull distribu-

tion'. The additional third parameter, also known as threshold, accounts for a minimum initial operating 

time, during which an (alleged) absolute and total absence of failure is guaranteed. In the following, we 

consider whether this assumption is justified or should be replaced by a more stringent approach.  

 

2 The problem  

2.1 The Weibull distribution with two parameters  

For many service life tests, the original Weibull distribution with two parameters can suitably represent 

the observed values. In general, F(t) denotes the cumulative distribution function of a time-dependent 

random variable and W(t) specifically denotes the Weibull cumulative distribution function: 

𝐹(𝑡) = 𝑊(𝑡) = {
1 − 𝑒−(𝑡

𝑇⁄ )
𝛽

, 𝑡 ≥ 0,  𝛽 > 0,  𝑇 > 0
 

 0, 𝑡 < 0
 

( 1 ) 

 

An important characteristic is that, in the exponential function, the time 𝑡 itself is raised to the power 𝛽. 

The parameter 𝑇 is called the characteristic time; regardless of the value of 𝛽, one always has         

𝑊(𝑇) = 1 − 1
𝑒⁄ ≈ 0.632.  
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At 𝑡 = 0, the cumulative distribution function 𝑊(𝑡) is equal to zero and begins to increase monoton-

ically as a function of 𝑡, approaching the value 1 for large 𝑡. From the values of the cumulative distri-

bution function, one attains the probability that a failure occurs at or before time 𝑡. With 𝑊(𝑡) = 0 for 

𝑡 < 0, the distribution shows that the effect cannot occur before the cause, i.e. a failure can only be 

expected after the start of the damage-inducing loading; this fundamentally excludes the possibility of 

failure before the damage-inducing loading, and, indeed, the probability of a negative service lifetime 

is zero.  

Instead of the characteristic value 𝑇, one commonly uses the 𝐿10-lifetime and algebraically manipulates 
Eqn. (1) into: 

𝐹(𝑡) = 𝑊(𝑡) = {1 − 𝑒
ln(0.9) [

𝑡
𝐿10 

 ]
𝛽

, 𝑡 ≥ 0,  𝛽 > 0,  𝐿10 > 0,

 0, 𝑡 < 0
 

( 2 ) 

Once again, there is a value independent from β that the cumulative distribution function depends on: 

by definition, 𝑊(𝐿10) = 0.1 and so 𝐿10 gives the time up to which 10% of failures are to be expected.

2.2 The shifted Weibull distribution (translated or 3-parameter Weibull distribution)  

For certain applications, one discovers that the initial number of failures is lower than predicted by the 

standard Weibull distribution. This deviation is attributed to processes such as wear, deterioration, or 

fatigue, which usually require a certain amount of time for damage to develop into failure. For this 

reason, Snare [1] and later on Bergling [2], used a third parameter 𝐿0, also known as threshold, in the

evaluation of roller bearing lifetimes to shift the cumulative distribution function to the right, according 

to  

𝐹(𝑡) = 𝑊(𝑡) = {
1 − 𝑒

 ln(0.9) [
𝑡−𝐿0

𝐿10−𝐿0 
 ]

𝛽

, { 

 𝑡 ≥ 𝐿0, 

𝛽 > 0,  

𝐿10 > 𝐿0 ≥ 0 

 0,  𝑡 < 𝐿0

( 3 ) 

to obtain a 'better' fit to the data points for early failures. When plotted, this correction can be visually 

judged to be adequate. Also, if the superiority of a parameter set is to be judged using the target value 

that arises from the optimization of an estimation process such as the maximum likelihood method, then 

the three-parameter Weibull distribution should indeed be preferred to the two-parameter Weibull dis-

tribution. On the one hand, this is the argumentation in favor of the three-parameter Weibull distribution. 

2.3 The conflict 

On the other hand, however, shifting the original Weibull distribution to get the curve of Eqn. (3) intro-

duces a new phase into the model. It is valid for 𝑡 <  𝐿0 and is of purely deterministic nature; the second

phase, valid for 𝑡 ≥ 𝐿0, is stochastic. These two domains of fundamentally different nature share the

predefined, non-random border at 𝑡 =  𝐿0.

In the first part, the model ensures that there are no failures before 𝑡 =  𝐿0. An event in this region

representing a failure can not occur and is labeled as 'impossible' by definition of Eqn. (3). Strictly 
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spoken, such a fundamental statement cannot be deduced or validated purely from observation, regard-

less of the number of data points. Even though an estimator  ̂𝐿0 for a sample exists and can be computed 
according to Park [3], this does not on its own prove the existence of a failure-free period of time 𝐿0.

From a numerical point of view, one hardly notices a difference between 'exactly zero' and very, very 

small, say one billionth or even less. Qualitatively, on the other hand, the 'impossible event' is funda-

mentally different from one with a low probability. The first is based on abstract definition, the other is 

a matter of the real world; in the first case, one can be completely unconcerned, in the other one, pre-

cautionary measures may become necessary.  

Additionally, this model necessitates an exogenous 'timer setting' that triggers the transition to the sec-

ond phase after which the ongoing fatigue or wear processes are allowed to develop into a failure.  

This is an unsatisfactory situation as there is a conflict. On the one hand, one has the best distribution 

(among the ones tested), while on the other hand, the statement and core assumptions of the distribution 

do not apply to the continuously progressing process that generates the observed values. A pragmatic 

way to resolve this issue would be to consider the Weibull distribution with 𝐿0 > 0 an approximation. 
Nevertheless, one must be prepared to fend off any outside claims that one has guaranteed safety from 

premature failures. There is a dilemma with only one possible resolution: to find a distribution that yields 

even higher target values in parameter estimation, that can also be interpreted without any problems.  

3 New approach 

3.1 Hyperbola instead of the straight lines  

The question therefore becomes whether it is possible to find an intermediate solution that preserves the 

Weibull character and allows for delayed failure behavior without permitting any misinterpretation. It 

is useful to simplify the equations by using the (𝐿10 −  𝐿0)-normalized variables 𝑡′ = 𝑡⁄(𝐿10 −  𝐿0) and 
𝐿′

0 = 𝐿0⁄(𝐿10 −  𝐿0). We then can write what is different in each distribution as auxiliary functions of 
𝑡′ as 𝑔2(𝑡′)  =  𝑡′ and 𝑔3(𝑡′) =  𝑡′ −  𝐿′0, respectively; the index is counting the parameters. The func-

tions 𝑔(𝑡′) are both the basis which is taken to the power 𝛽 in the cumulative distribution function of 

Weibull.  

These two functions that depend on 𝑡′and 𝐿0
′  are shown in Fig. 1 as two parallel lines with 𝑔2 on the left

as a dashed line, and shifted by 𝐿0
′ = 0.05 to the right as 𝑔3, which is represented by a dotted line. In

the area between the two lines, we may draw another curve. This curve should increase monotonically 

Fig.  1: 𝑔(𝑡′) over 𝑡′, 𝐿0
′ = 0.05
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from the value 0 at 𝑡′ = 0 and approach the line 𝑔3 for large 𝑡′. By taking the same name 𝐿′
0 for a 

similar parameter, an obvious choice would be the branch of a hyperbola, i.e. 

𝑔ℎ(𝑡′) =  −𝐿0
′ + √ 

 
 𝑡 

′2
+

 
 𝐿0

′ 2
,     𝑡′ ≥ 0,  𝐿0

′ ≥ 0

( 4 ) 

which is represented by the continuous line in Fig. 1. Near 𝑡′ = 0 the function 𝑔ℎ(𝑡′) behaves like
 
𝑡 

′2
/2𝐿0

′  
,  i.e. it begins with a horizontal tangent.1

3.2 Comparison of the cumulative distribution functions 

The three versions of 𝑔(𝑡′) lead to three Weibull distribution functions via 𝑊(𝑔(𝑡′)), where each 𝑔(𝑡′)

replaces the original 𝑡′; we apply the notation 𝑊2 to mean 𝑊(𝑔2(𝑡′)) for each 𝑔(𝑡′). Figures 2 and 3

show the curves with linear coordinates on the left and Weibull coordinates on the right, which shows 

the original Weibull distribution as a straight line. For these calculations, 𝛽 = 1.35 was chosen.  

The desired sensible behavior is clearly visible. On the left in Fig. 2, 𝑊ℎ remains close to 0 longer than

the original 𝑊2 and in the further course it approaches 𝑊3 more and more. In the Weibull diagram on

the right, 𝑊ℎ begins steeper than 𝑊2 but not as abruptly as 𝑊3, which starts at the fixed value 𝑡′ =  𝐿′0.

Thus, early failures are less likely by the hyperbola approach according to Eqn. (4) than for the original 

Weibull distribution 𝑊2 but not completely impossible before 𝑡′ =  𝐿′0 as it is for 𝑊3. For larger values

of 𝑡′, the curves 𝑊ℎ and 𝑊3 merge as a consequence of Eqn. (4), which can also be seen in the repre-

sentation with Weibull axes. Fig. 2 with undistorted axes shows only the section with small 𝑡′; when 

these axes are expanded to 𝑡′ =  10 as was done for the Weibull coordinates, one would not be able to 

distinguish the curves, especially for large 𝑡′.  

1 If, on the other hand, one wants to represent particularly frequent early failures rather than delayed 

ones, one may use a different hyperbola branch that increases quickly at 𝑡′ = 0,  just like the square root

function:       𝑔ℎ(𝑡′) =  √
 
 𝑡 

′2
+ 2𝑡′𝐿0

′

Fig.  2: 𝑊(𝑔(𝑡′)) over 𝑡′, 𝐿0
′ = 0.05,

    linear coordinates 

Fig.  3: 𝑊(𝑔(𝑡′)) over 𝑡′, 𝐿0
′ = 0.05,

   Weibull coordinates 
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The stated goal has been achieved since a useful replacement has been found. It is of continuously 

stochastic nature without a deterministic portion. Using initially small probabilities, it can represent 

delayed failures. There is no necessity for assumptions of a guaranteed lifetime 𝐿0.

4 Extension of the hyperbola 

4.1 Further replacement of the straight lines 

Is the potential of the first approach now exhausted or can it be pursued further and expanded? The 

characteristic course of the hyperbola branch should be preserved; how can it be varied? By generalizing 

the square root and the second power, we arrive at  

𝑔𝑐(𝑡′) =  −𝐿0
′  +  [ (

 
 𝑡

′ )
𝑐

+ (
 
 𝐿0

′  )
𝑐
 ]

1
𝑐⁄

,     𝑡′ ≥ 0,    𝐿0
′ ≥ 0,    𝑐 ≥ 1

( 5 ) 

with the new parameter 𝑐, the name of which is also used as an index for 𝑔𝑐(𝑡′), denoting the modified

approach.2 The curve of 𝑔𝑐(𝑡′) increases monotonically with 𝑡′, as was the case with the first hyperbola

in Eqn. (4); by replacing 𝑡′ with 𝑔𝑐(𝑡′) in the Weibull formula, the definition of a distribution is still

fulfilled.  

Figure 4 shows a sheath of continuous curves between the original straight lines, which are represented 

by dashed line and dotted line, respectively. The list shows the corresponding values for 𝑐, where the 

arrow is pointing in the direction of increasing values. For  𝑡′ = 0, the curves increase with 𝑡′, with

almost horizontal tangent lines, like  𝑡 
′𝑐

𝑐𝐿0
′ 𝑐−1

,   ⁄ and with increasing 𝑐 they can thus lie along the time 

axis more closely and for a longer duration. 

The new formula does not just fill the area between the first two straight lines, it also has the nice 

property of including the original Weibull distribution for 𝑐 =  1, while the other shifted one is bound-

ary case for 𝑐 → ∞.  

2 Values in the range 0 < 𝑐 < 1 generate more frequent early failures 

Fig.  4: 𝑔(𝑡′) over 𝑡′, 𝐿0
′ = 0.05
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4.2 Comparison of the cumulative distribution functions 

The appearance of the corresponding cumulative distribution functions, on the left in equally divided 

coordinates and on the right with Weibull axes, now turns out as one might expect; between the two 

original curves, there are arbitrarily many intermediate variants. In Fig. 6 with Weibull coordinates, the 

curves run from the bottom almost straight up towards the line 𝑊2 with varying curvature. Because the 
series expansion of 𝑔𝑐(𝑡′) begins with order  𝑡 

′𝑐
 for small times 𝑡′, the initial slope of the 𝑊𝑐 in the 

Weibull coordinates is 𝑐𝛽.   

4.3 Special properties  

As an example, Fig. 7 repeats the representation of the first hyperbola approach according to Eqn. (4). 

Additionally, a series of small circles shows the nearly linear initial slope of 2𝛽 and continues it to larger 

values. We see that this line, together with 𝑊2, can be pieced together to conservatively approximate

𝑊ℎ. This is reminiscent of the old rule for the design of ball bearings, according to which the value of

𝛽 should be increased to 1.5 for service lifetimes below 𝐿10.3

3 This modification is taken into account in the calculation of the reliability factor 𝑎1 according to ISO
281 (2007 and previous versions) [4]. 

Fig.  5: 𝑊(𝑔(𝑡′)) over 𝑡′, 𝐿0
′ = 0.05,

 linear coordinates 

Fig.  6: 𝑊(𝑔(𝑡′)) over 𝑡′, 𝐿0
′ = 0.05,

  Weibull coordinates 

Fig.  7: 𝑊(𝑔(𝑡′)) and asymptote over 𝑡′, 𝐿0
′ = 0.05,

 Weibull coordinates 
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4.4 A short look at parameter estimation 

For the original Weibull distribution with two parameters, one calculates the estimators 𝛽̂ and  𝐿̂10 from 

measured service lifetimes. Every measurement has an influence on each of those two values. At most, 

the extreme failure times with low and high values have more influence on the result of the slope 𝛽̂ in 

the Weibull coordinates and the intermediate values have more weight in the calculation of 𝐿̂10.  

This changes for the four parameters of the extended approach. The new values 𝐿0 and 𝑐 arise on their

own as the influence and efficacy in the initial range; as a result, their estimation 𝐿̂10 and 𝑐̂ depend 
mainly on the times of the first early failure cases. This is related to a reduced dependence of both 

estimators 𝛽̂ and 𝐿̂10 on the first early failure cases. A sufficiently large number of early failure cases is 
therefore necessary in order to estimate the new parameters accurately and reliably. If so far the number 

of early failures appeared to be sufficient to calculate the estimate 𝐿̂0 of the shifted Weibull distribution 

alone, such a number might now also be good enough to get usable values for 𝐿̂0 and 𝑐̂ for the proposal. 
Moreover, typical values for certain special applications can be considered, such as the typical values 

of 𝛽 equal to 1.11 for roller bearings primarily with point contacts versus 𝛽 equal to 1.35 for cases with 

point and line contacts.  

5 Conclusion 

For continuously progressing wear and fatigue processes, the Weibull distribution with three parameters 

is not a suitable model for the distribution of service lifetimes as long as there are no external influences; 

it can only be viewed as a pragmatic approximation. In the approach presented here, the linear depend-

ence on time 𝑡 is replaced by a hyperbolic dependence. This new variant can represent delayed failure 

behavior in a fully stochastic model while avoiding difficulties with interpretation of the parameters, in 

particular with respect to guaranteed service lifetimes.  
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Abstract 

Rolling bearing fatigue life is a stochastic process generally represented by a Weibull-like statistical distribution. 
The typical reliability indicator taken as characteristic performance of rolling bearings is the L10 life, i.e. durability 
for 10% failure probability among a large bearing population. For a specific bearing under specific operating 
conditions, calculation models are available to compute the values of L10. Calculation models must also be com-
pared to test data and the degree of conformity between the calculated life and the experimental life must be 
assessed. This article offers a new statistical measure, defined as Experimental Conformity Level (ECL), able to 
quantify the way a calculated life L10 fits with the estimated L10 from test data. The ECL combines the deviation 
between the estimated L10 from testing and the calculated L10, with the precision of the experimental data. This 
gives a premium to the ECL value in case the fit is related to a large data set leading to precise estimations of the 
experimental L10 used in the assessment. 

Keywords: Fatigue, Weibull statistics, Bearing Life, Life estimation 

 

1. Introduction 
Rolling bearings are machine elements that are subjected to Rolling Contact Fatigue (RCF) and usually operate 
under high rotation frequencies. This type of fatigue is categorized as Very High Cycle Fatigue (VHCF). Typically, 
rolling bearings reach the end of life by fatigue damage originated from the surface or the subsurface [1] in the 
rolling contact. It is also well known that seemingly identical bearings, running under the same operating condi-
tions, have significantly different individual endurance lives. This occurs because the random presence of inho-
mogeneities in the material microstructure, surface finishing defects and geometrical tolerances have a very sig-
nificant effect on the endurance of an individual bearing. This is why the fatigue life of an individual bearing is 
usually treated as a random variable [2]. Early models and also more recent bearing life models [1, 3, 4, 5, 6, 7] 
apply a combination of physical principles (i.e. RCF, Tribology) and statistics, usually based on the Weibull sta-
tistical model [8]. These models attempt to predict the number of revolutions for a given probability of survival of 
a population of seemingly equal bearings running under seemingly equal operating conditions. Following this 
approach, the L10 life rating of an individual bearing is the number of revolutions that the bearing will attain or 
exceed with a probability of survival or reliability of 90%. Within the framework of good economic sense, it was 
established in the past [3, 4, 9] that 90% reliability is indeed a suitable reliability level that can be verified by 
testing. This is usually done by performing endurance testing on a population sample of rolling bearings [10]. The 
objective of the current article is to introduce a new statistical method able to quantify the degree of conformity 
between endurance test data and the L10 predicted using bearing life calculation models. 

 

2. Life statistical models 
To model the randomness of physical phenomena like the fatigue of materials or mechanical product life, the 
Weibull statistical distribution is often used. It was introduced in the setting of material strength by Waloddi 
Weibull [2] and extended to a wide range of experimental data [8]. The 2-parameter Weibull distribution, denoting 
(η,β) its 2 parameters, is widely used together with its special case, the exponential distribution. The 2-parameter 
Weibull distribution turns into an exponential distribution when the shape parameter β equals to 1. 

In both definitions, L denotes the random variable standing for the Life duration. The distributions are given with 
their two most common expressions, the more mathematical form with η (or λ for the exponential) as a scale 
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parameter, and the more engineering form, using the 10th life percentile L10 as a scale parameter. A life percentile 
Lp is the time that p% of a large homogeneous population will not survive. Equivalently, Lp is the time that (100 
− p)% of a large homogeneous population will survive. 

Exponential Distribution 

Weibull 1-parameter is the exponential distribution: 

 

𝑃𝑃(𝐿𝐿 > 𝑥𝑥) = exp(−𝜆𝜆𝜆𝜆) with 𝜆𝜆 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) > 0 

Weibull 2-parameter Distribution 

Weibull 2-parameter distribution is: 

𝑃𝑃(𝐿𝐿 > 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−�
𝑥𝑥
𝜂𝜂
�
𝛽𝛽
� = 0.9�

𝑥𝑥
𝐿𝐿10

�
𝛽𝛽

 

 

with η (scale parameter), β (shape parameter) > 0. By definition of a percentile, L10 being the 10th percentile, it 
corresponds to 𝑥𝑥 such that 𝑃𝑃(𝐿𝐿 > 𝑥𝑥) = 0.9. Therefore, 

𝐿𝐿10 = 𝜂𝜂 × (− ln 0.9)1/𝛽𝛽 

 

This leads to the engineering formula for the Weibull 2-parameter distribution: 

𝑃𝑃(𝐿𝐿 > 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−�
𝑥𝑥
𝜂𝜂
�
𝛽𝛽
� = 0.9�

𝑥𝑥
𝐿𝐿10

�
𝛽𝛽

 

with β (shape parameter), L10 (10th Life percentile) > 0 

 

3. Life percentile estimation 
For the Weibull 2-parameter distribution, the classical method used to estimate the parameters is the Maximum 
Likelihood Estimation (MLE). This method is known to be biased (see for instance [6]), this bias being non-
negligible for the small sample size used in testing, less than 30 items typically. A recognized median bias correc-
tion technique (for the MLE estimation) was developed to obtain accurate estimates together with confidence 
bounds. The current bias correction method in life analysis of mechanical components uses correction factors 
computed from Monte Carlo simulations and applied to non-censored data [Non-censored data means that all 
bearings are run until failures] or Type II censored data [Type II censored data means that bearings are run in 
parallel until a fixed number of failures is reached and then all the running ones are stopped]. For a complete 
explanation of this bias correction techniques, see [11, 12, 13, 14]. See also the more recent article [15] referring 
to software able to proceed with such bias correction and also [16] focusing on improving this bias correction 
technique for test data including general censoring scenarios. 

Any parameter estimation comes with a confidence interval showing the interval within which the target parameter 
lies with a chosen confidence level. The width of the confidence interval is a good indicator of the precision of the 
estimation.  

The classical confidence interval for L10 is [L10,5 , L10,95]. The levels 5 and 95 in the subscript correspond to the 
level of confidence associated with the calculation. In 90% of the case the interval [L10,5 , L10,95] contains the true 
target L10 value. 
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Similarly L10,50 can be computed from test data and called the median estimate of L10. 

The confidence interval gives then a key information on the precision of the L10 estimation. A wide confidence 
interval means that there is a high uncertainty around this estimation (like when you make a poll for an election 
asking only 10 people). A narrow confidence interval means that there is high precision around this estimation 
(like when you make the election poll asking 10,000 people chosen within a representative random sample). 

Generally, this precision is measured via the ratio between the upper and lower bounds. Indeed, in the latter ex-
ample, if having more or better data helps to get L10,5 = 300 Mrevs and L10,95 = 600 Mrevs instead of 100 and 800, 
the precision improved from a factor of 8 (800/100) to a factor of 2 (600/300). Although 5 and 95 are classical 
confidence levels, any other values can be used. For instance, 10 and 90 are also sometimes used leading to the 
interval [L10,10 , L10,90]. 

The 2-parameter Weibull distribution has a second parameter β, shape parameter, which needs also to be estimated 
from the test data leading then to similar confidence bounds and intervals as for the L10: β5, β10, β50, β90 and β95. 
The estimations of the shape parameters β are also biased and the bias correction techniques also applies to β. See 
again [11, 12, 13, 14] for more details and formulas. 

4. Experimental Conformity Level (ECL) 
A traditional use of confidence intervals like [L10,10 , L10,90] is a comparison with calculated L10 values from life 
models. Such calculated L10 will be denoted L10(calc). A classical method to compute the experimental confidence 
is to fit a Gaussian distribution on the confidence interval. The method is simply to take confidence bounds as 
percentiles of a Gaussian distribution (actually two distributions, one below the median estimate and one above 
the median estimate). This is an engineering method not based on statistical method. 

This method is only expressing how safe the test is with respect to the calculated L10(calc) but without judging 
potential underestimation. It has also the drawback of not considering the estimated value of the shape parameter 
β. This impact will be explained below using Figure 1.  

We then introduce a new statistical quantity, called: “Experimental Conformity Level (ECL)”. This parameter 
aims to quantify the conformity between the calculated life L10(calc) and the result from the tests (including the 
confidence intervals on the L10 and the β). This parameter is linked to the experimental confidence (Gaussian) but 
provides new features that can be illustrated as follows: 

• It gives a premium, respectively a penalty, for narrow, respectively wide, confidence intervals on L10 

• It takes into account the estimated β and its associated confidence bounds 

The second point is of importance especially when the estimated β is high because, in such a case, a value slightly 
different from the L10 can correspond to a much lower reliability level as shown in the subsequent examples. 

Example: If L10=100 Mrevs and Beta = 1.1 are supposed to be known, then 150 Mrevs corresponds to the true L15, 
but if Beta = 2, then 150 Mrevs corresponds to the true L21. This is illustrated in Figure 1. 
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Therefore, at a high β, an identical quantitative error on the L10 value that is calculated is more detrimental for the 
final reliability of the product given to the customer. Therefore a wider confidence interval is more detrimental at 
high β than at low β. 

Figure 1- L10 estimation sensitivity to Beta (1.1 and 2) 
The formula of the ECL is built by computing two failure percentages P1 and P2. These failure percentages are 
computed using L10 and β values taken from the confidence intervals. The values are chosen to be conservative. 
P1 measures the risk to have a calculated life too high compared to the true life. This risk is evaluated using β90 
(to be conservative) in order to reflect the sensitivity to β illustrated in Figure 1. P2 measure the risk to have a 
calculated life too low compared to the true life. The conservative approach is taken for P1 since the associated 
risk is more detrimental. 

Assume that the true L10 equals the L10,10 and the true β equals the β90, then the calculated L10(calc) corresponds to 
the true LP1: 

𝑃𝑃1 = 100 × �1 − 0.9
�𝐿𝐿10(calc)
𝐿𝐿10,10

�
𝛽𝛽90

� 

Each value of P1 is associated with a percentage X% by: 

 

• 𝑃𝑃1 ≤ 15 ⇒ 𝑋𝑋 = 100% 
• 15 < 𝑃𝑃1 < 25 ⇒ 𝑋𝑋 = (25 − 𝑃𝑃1) × 10%  
• 𝑃𝑃1 ≥ 25 ⇒ 𝑋𝑋 = 0%  
The objective of the value X is to give a penalty when the calculated L10(calc) risks to lead to too high life percen-
tile. This risk being computed from the estimated L10 and β. 

The extreme values (15 and 25) are chosen to reflect acceptable risks when looking at actual reliability levels. 
Between those extreme values, X is simply linearly interpolated. 

Assume now that the true L10 equals the L10,50 and the true Beta slope equals β50, then the calculated L10 corresponds 
to the true LP2: 

𝑃𝑃2 = 100 × �1 − 0.9
�𝐿𝐿10(calc)
𝐿𝐿10,50

�
𝛽𝛽50

� 

Each value of P2 is associated with a percentage Y% by: 
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• 𝑃𝑃2 ≤ 3 ⇒ 𝑌𝑌 = 0% 
• 3 < 𝑃𝑃2 < 8 ⇒ 𝑌𝑌 = (𝑃𝑃2 − 3) × 20% 
• 𝑃𝑃2 ≥ 8 ⇒ 𝑌𝑌 = 100% 
The objective of the value Y is to give a penalty when the calculated L10(calc) could lead to too low life percentile. 
This risk being computed from the estimated L10 and β. 

The extreme values (3 and 8) are chosen to reflect acceptable risks when looking at actual reliability levels. Be-
tween those extreme values, Y is simply linearly interpolated. 

The final ECL is defined as  

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑀𝑀𝑀𝑀𝑀𝑀{(𝑋𝑋 + 𝑌𝑌 − 100), 0}% 

combining values from the lower and upper true-life percentiles corresponding to the calculated L10. This means 
that having confidence, from the test results, that the calculated L10 is actually between the true L8 and the L15 
leads to an ECL of 100%. Also, if the calculated L10 has a risk to be less than the true L3 or higher than the true 
L25, then the ECL becomes 0%. The intermediate cases are linearly interpolated between the latter extreme cases. 

The motivation behind taking 90% confidence in the calculation of P1 (L10,10 and β90) and 50% confidence in the 
calculation of P2 (L10,50 and β50) is to put more weight on the most conservative (business-wise) case. 

In order to interpret the ECL, a high ECL percentage (above 90%) will then guaranty strong and trustful conformity 
between the test results and the calculated life. This can be applied either to test data or field data. 

 

5. Discussion 
The ECL is a novel method to assess at the same time the accuracy of a life estimation form a life test and the fit 
between the test result with a calculated life. The lack of confidence can come from two sources: either because 
the test has large confidence intervals (too few tested samples, poor Weibull fit…) or because the calculated life 
does not fit with the test results (estimated life from the test). Each of these two sources will penalize the ECL 
value. 

In order to better understand the added value that the ECL could bring to the statistical analysis of test data, we 
present 3 examples of endurance tests where the data has been normalized so that the L10,50 is always 100 (see 
Figure 2) 
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Figure 2 – Weibull plot for three tests (normalized) 
Test 1 has many failures and a high beta. Test 2 has a limited number of failures and still a high beta. Test 3 has 
many failures and a low beta. 

If we assume L10(calc)=80 (a conservative value but rather close to the L10,50=100), the ECL can be calculated for 
each of the 3 tests, see Table 1 that shows all the data for the calculation and the last row shows the calculated 
ECL for each test. 

 

Table 1. ECL calculated for each test of Figure 2. 

Parameter Test 1 Test 2 Test 3 

𝛽𝛽, 90 % 2.36 2.38 0.79 

𝐿𝐿10,10 71.14 46.7 31.35 

𝛽𝛽, 50% 1.87 1.56 0.63 

𝐿𝐿10,50 100 100 100 

𝐿𝐿10(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 80 80 80 

Calculated ECL 74% 0% 52% 

 

The use of the ECL allows to conclude that Test 1 ensures a very high conformity between the test and the calcu-
lated life. This is due to the very narrow confidence interval on L10. The calculation gives P1=13 and P2=6.7, so 
the use of L10(calc) is not leading to any significant risk of overestimation or underestimation of the life. 

Test 2 is not giving any conformity, although it has 7 failures and a reasonable confidence interval width. The 
reason is that the beta is high (illustrated by a high slope on the Weibull plot). Such high beta means that a small 
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shift in life calculation can have a big impact on the reliability. The calculation gives P1=31.6 and P2=7.2. This 
means that selling L10(calc)=80 as correct, there is a risk that this value corresponds to the L31.6 instead of the L10. 
So, when a customer is expecting 10% failures maximum at a designed time, he/she may get 31.6% failures, 3 
times more! In such case, more test data must be obtained to have a better estimation of the life. 

Test 3 ensures limited conformity. This is partially due to the wide confidence interval, but the low beta (illustrated 
by a low slope on the Weibull plot) is forcing this large width. The computation of the ECL allows to balance the 
impact of the beta and the impact of the limited sample size. In the case of Test 2, we tested many samples and 
have got many failures. Therefore, we essentially obtained the inherent width for the confidence interval. The 
calculation gives P1=19,8 and P2=8.7, which means that the error in terms of life percentile that can be made by 
using L10(calc) remains reasonable. 

To complete the analysis, we could study Test 4 with fewer failures and sill a low beta value (see Figure 3). This 
will increase the uncertainty (and then the width of the confidence interval) loosing then any conformity 
(ECL=0%). 

 

Figure 3 - Test 4 (Normalized / low beta / less failures) 

6. Conclusions 
A new statistical measure, the Experimental Conformity Level (ECL) has been introduced to quantify the way a 
calculated life L10(calc) fits with experimental data. The ECL weights the deviation between the estimated L10 and 
the calculated L10(calc) using the confidence bounds on both the  L10 and the β. This gives a premium to the ECL 
value when we deal with large set of test data leading to high precision in the estimations of the L10 obtained from 
testing.  

The ECL calculation takes into account the estimated value of the Weibull shape parameter Beta and this gives a 
weighted measure of the fit with the experimental data and overcomes the potential misinterpretation regarding 
the actual deviation between the calculated and the estimated life. Indeed, identical deviations will have different 
reliability consequences when they are related to test results with significant different Beta values (see Figure 1). 

The ECL is a new statistical measure that provides the following advantages: 

• Quantitative statement on how well a life calculation model correlates to the experiments 

• Ability to rank different life calculation models based on actual experimental data 

• Proven robustness to compensate for different values of the shape parameter Beta of tests 
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Abstract 
Bearing life is assumed to encounter randomness driven by a Weibull-like statistical distribution. Typical reliabil-
ity level taken as performance characterization of rolling bearings is the L10 life (10% of failure among a large 
bearings population). Business wise, quantitative estimates of higher reliability levels (below L10) are of im-
portance for an increasing number of applications, thus they need then to be investigated further. This article aims 
are twofold (i) to describe the various ways to give quantitative estimation of high reliability levels depending on 
the available information (test data, prior knowledge), (ii) the level of confidence needed together with the esti-
mation techniques (extrapolation, confidence bounds) and the statistical model applied for the life distribution 
(Weibull 2, Weibull 3). Practical recommendations are also derived to offer guidelines and limitations when con-
fronted to either realistic (size-wise) data sets or extrapolation requests from standard L10 calculations. 

Bearings, Bearing Life, Reliability Analysis, Bearing Testing, Weibull Analysis 

1. Introduction 
Rolling bearings are machine components that are subjected to rolling contact fatigue (RCF) which is a type of 
very high cycle fatigue (VHCF). They might reach their end of life with damage originated from surface or sub-
surface mechanisms [1]. It is well known that seemingly equal bearings running at seemingly equal operating 
conditions in a machine can produce very different individual lives, this is because small variations in the material 
micro-structure, geometry and surface finishing from manufacture, particles in the contact or small variations in 
the operating conditions can have a very large effect in the performance of the individuals. This is why the bearing 
life of an individual rolling bearing is considered as a random variable [2]. Pioneering and recent bearing life 
models used in industry [1, 3, 4, 5, 6, 7] apply a combination of physical principles (RCF, Tribology) and statistics, 
usually a Weibull statistical model [8]. These models attempt to predict the bearing life of populations of seemingly 
equal bearings under seemingly equal operating conditions with a certain reliability value. Thus the 𝐿𝐿10 life is the 
life that 90% of a large population of bearings will achieve (also named as 90% reliability). 

It has been demonstrated in the past [3, 4, 9] that a good reliability level that can be verified accurately with 
endurance testing of rolling bearings in a frame of good economic sense, is indeed the 90 % reliability. The stand-
ard  ISO 281 in its 1999 version included only up to 99 % reliability values. But in the 2007 version [7] this was 
increased until 99.95 %. 

In a wider machine design perspective, so far only rolling bearings are designed considering quantitative reliability 
levels. Other machine components like gears or cam-followers do not yet benefit form a physics-probabilistic life 
calculation, only recently this idea for gears was again revived [10]. However the idea of using much higher reli-
ability than 90% for bearings as response of complete system failures in the field could be dangerous. Since this 
is based on faith in the accuracy of higher reliability calculation values stated in the ISO 281 [11]. This aspect is 
already open for consideration in system design standards [12]. Therefore, it is important to investigate the accu-
racy and correctness of extrapolating reliability factors obtained in medium reliability values for the life of rolling 
bearings to very high reliabilities.  
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The article is structured as follows. Section 2 gives the background on the high reliability factor used in the ISO. 
Section 3 computes the precision of the different methods, also assessing their robustness towards assumptions. 
Section 4 gives practical recommendations in case a high reliability is requested. Details on the different statistical 
distributions used to model bearing life are given in Appendix A. Extrapolation factors that could be used for high 
reliability levels are discussed in Appendix B. 

1.1. Objective of the Present Article 
To investigate the accuracy and correctness of extrapolating reliability factors obtained in medium reliability val-
ues for the life of rolling bearings to very high reliability levels. Where quantitative boundaries for such extrapo-
lations are derived, concrete recommendations are set and comparisons between different statistical distributions 
are done. This article can then serve as rules for such extrapolations based on statistical analysis and extensive 
Monte Carlo simulations. In the current literature, this aspect has been neglected and therefore, this aspect is novel 
and makes the contents of this article critically important. 

Nomenclature: 
Notation Definition 

𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼 Life modification factor, based on a systems approach of life calculation 

L Life random variable 

η Weibull statistics scale parameter 

β Weibull statistics shape parameter 

Lp General life percentile 

L10 10th Life Percentile 

L0 Minimum life 

α Ratio L0/L10 

L10,X Xth confidence bound on L10 (X% chance to have the true L10 below) 

 

2. Derivation of the Reliability Factor for Life in Rolling Bearings 
The ISO/TR 1281-2 [7] describes in more detail the introduction of the reliability factor for life calculation in 
rolling bearings called 𝑎𝑎1, which is applied in the modified bearing life equation as follows: 

𝐿𝐿𝑝𝑝 = 𝑎𝑎1𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿10                                                                                                                                                           (4) 

Allowing for the calculation of the 𝐿𝐿𝑝𝑝 life (bearing life with 𝑆𝑆 = 100 − 𝑝𝑝 [%] reliability) from the L10 life value 
(bearing life with 90% reliability). A table of values for 𝑎𝑎1 respect to 𝑆𝑆 is given up to value of 𝑆𝑆 = 99.95, thus up 
to L0.05. This represents very high reliability. Up to what point this is still valid or accurate? In this paper, answers 
to these questions are explored. For that it is necessary to understand the derivation given in [7] for this parameter. 

Starting from a 3-parameter Weibull distribution (see Appendix A): 

𝐿𝐿𝑝𝑝 − 𝐿𝐿0
𝐿𝐿10 − 𝐿𝐿0

=
�𝐿𝐿𝐿𝐿𝐿𝐿 � 100

100 − 𝑝𝑝��
1/𝛽𝛽

�𝐿𝐿𝐿𝐿𝐿𝐿 �100
90 ��

1/𝛽𝛽                                                                                                                              (5) 
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Based on the extensive data pooling presented in [9], a minimum life L0 (life achieved with 100% reliability) is 
assumed in [7] with L0=α x L10. Equation (5) becomes then 

𝐿𝐿𝑝𝑝 − α × 𝐿𝐿10
𝐿𝐿10 − α × 𝐿𝐿10

=
�𝐿𝐿𝐿𝐿𝐿𝐿 � 100

100 − 𝑝𝑝��
1/𝛽𝛽

�𝐿𝐿𝐿𝐿𝐿𝐿 �100
90 ��

1/𝛽𝛽                                                                                                                     (6) 

And from (6), the ratio Lp/L10 can be derived: 

𝐿𝐿𝑝𝑝
𝐿𝐿10

= 𝑎𝑎1 =  α + (1 − α) ×
�𝐿𝐿𝐿𝐿𝐿𝐿 � 100

100 − 𝑝𝑝��
1
𝛽𝛽

�𝐿𝐿𝐿𝐿𝐿𝐿 �100
90 ��

1
𝛽𝛽

                                                                                                     (7) 

From equation (7) and the extra assumption that the shape parameter β equals 1.5, the reliability factor 𝑎𝑎1 is ob-
tained in [7]. Therefore the life Lp becomes: 

𝐿𝐿𝑝𝑝 = 𝑎𝑎1𝐿𝐿10                                                                                                                                                                    (8) 

Notice that this derivation (from [7]) requires that Lp follows closely a 3-parameter Weibull distribution with β 
equals 1.5. In addition, [7] presents the calculation for 2 values of α, namely 0 and 0.05 and the final ISO 281 [11] 
applies α =0.05. Whether these assumptions are in general valid or not, can be questioned. 

Indeed, the latter is essentially based on the extensive pooling (2520 bearings tested with 2230 failures) presented 
in [9]. In this reference [9], the reliability plot shows a bending respects to the straight lines (Weibull 2-parameters). 
This bending leads to an assumed L0 around 0.004, while L10 is estimated as 0.1, the factor 0.05 is an approximation 
of the ratio 0.004/0.1 (using the values as in [9] or 0.4/10 as in Figure 1 with a different normalization). But, the 
final bending in [9] depends only on 2 failures (out of 2230). Later on, further pooling of test data [13, 14, 15] 
were in line with [9] (see Figure 1 with normalized pooled data). Nevertheless, these references are more than 30 
years old and the increased performance of bearings and steels may affect different reliability levels in different 
ways. Typically, a better steel will improve the overall performance of the population (modification of 𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼) but 
not the very early failures in the same range. The 0.05 factor may then become larger. Extensive pooling of data 
shown in Figure 3 demonstrates that the Weibull 3-parameters assumption may not be valid in general. 

Figure 1 - Normalized pooled bearing data reproduced from [9] 
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Appendix B offers an overview of the extrapolation method for the Weibull distributions and two values of the β 
parameters (1.5 and 1.1, corresponding the 2 classical assumed values for bearing lives). 

3. Quality of the estimation of high reliability levels 
Here some details are given regarding the precision of the estimations and the effect of the parameter settings. In 
the first subsection the Maximum Likelihood method is taken into account and quantitative evaluation on the 
robustness of target parameters is provided. In the second subsection the effect of deviations in the distribution 
parameter is quantified. 

3.1. Precision of the estimations 
Any parameter estimation comes with a confidence interval. This depicts  the interval within which the target 
parameter lies with a chosen confidence level. The width of the confidence interval is a good indicator of the 
precision of the estimation. The classical confidence interval for L10 is [L10,5 , L10,95]. The levels 5 and 95 in the 
subscript correspond to the level of confidence associated with the calculation. This means that for 90% of such 
confidence intervals, the true value of L10 will lie inside. For example, with L10,5 = 100 Mrevs and L10,95 = 800 
Mrevs, it means that the true L10 has then 90% chances to lay between 100 and 800. The precision of such intervals 
is measured via the ratio between the upper and lower bounds. For example, with L10,5 = 100 Mrevs and L10,95 = 
800 Mrevs, we get a precision of 8 (800/100) while with L10,5 = 300 Mrevs and L10,95 = 600 Mrevs, the precision 
improved to a factor 2 (600/300). Although 5 and 95 are classical confidence levels, other values can be used. For 
instance 10 and 90 are also sometimes used leading to the interval [L10,10 , L10,90]. 

The precision depends on many factors, mostly the following ones: 

i. Fit between data and model 

ii. Sample size 
 

The first factor is related to the discussion about the extrapolation (see Appendix B) since all the models have a 
scope of applicability. Weibull models are historically targeting L10 estimation. Moreover, the failure modes ac-
counted in the early life might be different from the one encountered around the L10 (see Section 3.2). Therefore, 
the fit between the data and the model can be poor. The sample size is also a key issue in the high reliability 
precision. The width of confidence interval is directly related to this size. For Gaussian models, the precision 
increases at a speed of order √n where n is the sample size. It means that the confidence intervals width decays 
following 1/√n. For Weibull models, the situation is different and there is no formula for that width. Nevertheless, 
Monte Carlo simulations have been run to evaluate this precision speed increase on tests of n bearings up to (0.2 
× n) failures. The result is that the interval width (ratio between the upper and lower bounds of [L10,5 , L10,95] 
confidence intervals) decays towards 1 in a less predictable way. Namely, the logarithm of the ratios decays to 0 
as 1

𝑛𝑛1 3�
� . The latter decay has been obtained by extensive Monte Carlo simulation similar to the one in Figure 2 

with increasing values for the sample size n leading to the above mentioned decay. This being valid also for L5 
and L1. This decay being independent on β. Figure 2 is showing the impact of the sample size onto the width of 
the confidence interval. The data used to build Figure 2 are randomly generated (Monte Carlo simulations). For 
the sake of clarity, samples have been scaled at different decades to avoid superimposed intervals, only width of 
intervals have to be seen from Figure 2. 
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Figure 2 - Width confidence interval on L1, L5 and L10 and their evolutions with sample size (all samples censored at the 
time of the Xth failure where X = 20% of the sample size) 

 
Figure 2 clearly shows the high risk of a too high reliability level estimation, like the L1 parameter which keeps an 
uncertainty of factor 100 at a sample size typical for a life test (30 bearings).  

From Figure 2 and extended Monte Carlo simulations, minimum sample sizes can be derived for life percentiles 
L1, L5 and L10. The Monte Carlo simulations were done, for each sample size, with 10,000 runs each. The large 
number of runs ensures stability of the results. They were using parametric (Weibull) random generator at the 
same Beta value (1.1, typical of bearing life). The input L10 value was taken as 1 since it is only a scale factor. 
These minimum sizes are divided in two sets, a strict minimum size and a recommended one offering better ro-
bustness. The recommended sizes correspond to a high probability for the confidence interval to have a ratio less 
than 10 between its upper bound and lower bound. This ratio 10 is coming from long time experience in life testing 
where performance comparison needed at least one decade to be conclusive. As for the minimum number of fail-
ures, the ratio of 20% of the sample size taken in Figure 2 must be kept to achieve enough failures and then a good 
fit with the Weibull statistical distribution. This value (20%) is chosen to ensure failures below and above the 
target life percentile L10 corresponding to 10% failure. 

Reliability level Min. Sample Size Min. No of Failures Recom. Sample 
Size 

Recom. No of Fai-
lures 

L1 100 20 200 40 

L5 40 8 50 10 

L10 20 4 30 6 

Table 1 – Rules on minimum sample size and number of failures for different target reliability levels 
 



Blachère et al. – Bearing World Journal Vol. 6 (2021) page 23– page 39 
 

 
28 

The results in Table 1 show clearly that in order to have a good accuracy in reliability levels of L1, a substantially 
higher number of failures is required, which means that a much greater number of bearings need to be tested in 
comparison to more conventional reliability levels like L10. In practice this does not have economic sense, thus it 
is not common practice. 

3.2. Treatment of experimental data 
As seen in Section 3.1, the precision and accuracy of the statistical estimation of the life parameters (whatever 
choice has been made for a life model) is very sensitive to the sample size. Therefore, it is valuable to extend the 
sample size as much as possible. When dealing with test data, a solution is to pool these data. Such a pooling needs 
to be done carefully to guarantee homogeneity among the individual data sets. The pooling should then stick to 
one of the following two cases: 

i. Pool data coming from tests of the same product of same size under similar conditions. 

ii. Pool data coming from tests of the same product under scalable sizes and conditions. 

 

By "scalable", the authors mean that the lives can be compared via a multiplication factor (same β in the case of 
2-parameters Weibull data). In such a case, a physical model (or a prior knowledge) can help to develop this 
multiplication factor. For example, rolling bearings under the same contact pressure but different geometries or 
bearings with the same geometry and same contact pressure but different sizes and loads. This can typically be the 
case for a size effect within a unique size range (e.g. two different medium sizes). Then, one size and condition 
are chosen as reference and the data coming from other sizes and / or conditions are rescaled according to a mul-
tiplication factor. Then, the data are pooled together with the reference. Such a pooling is of great interest for the 
quality of the life parameter estimation but it relies on the identical β assumption and the multiplication factor 
chosen. For instance, a difference of 10% in β between two pooled test samples may lead to an error (lack of 
accuracy) of 5% on L10, 10% on L5 and 20% on L1 once these reliability levels are estimated from the pooled data. 

Pooling test data is common practice in bearing endurance testing, extensive pooling of test data has been done in 
the past [9] and the authors have performed new pooling here (From large amount of in-house endurance tests on 
CRB’s, SRB’s and TRB’s). Figure 3 shows three examples of pooled experimental data (for the 3 different bearing 
types) leading to very different behaviors for the early failures. 
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(a) Case 1 

 

(b) Case 2 

Normalized Life 

Normalized Life 
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(c) Case 3 

Figure 3 – Various trends at high reliability with endurance test data performed in-house with three different bearing types. 
 

The 3 cases  of Figure 3 (a), (b) and (c) correspond to extensive pooling of actual bearing data for 3 different 
bearing types, they cover around 100 samples allowing for high reliability level estimation even for L1. 

Nevertheless, the first failures show 3 different trends towards these high reliability levels (L1). This behavior 
shows the risk of assuming a theoretical Weibull distribution (2 or 3 parameters) when the reality might be more 
complex. The potential deviation between the assumed statistical distribution and the actual one will lead to severe 
error in the estimation with high reliability levels. Such error for L1, is illustrated in Figure 3 where the plot (c) fits 
with a 2-parameter Weibull, the plot (b) fits with a 3-parameter Weibull and the plot (a) has no known theoretical 
fit. 

Figure 3 also illustrates clearly the high risk of having any estimation of reliability levels beyond L1. Indeed, the 
discrepancies observed at the L1 levels can only increase when moving further into higher reliability levels. 

4. Good Practice Principles 

Next, based on the results shown in this paper some good practice recommendations are given in order to 
statistically assess bearing life from endurance testing results for medium and high reliability levels.  

Limitations 
• If the test target concerns the L10 or higher reliability levels, then it is recommended to stop the test after 

maximum 50% of the tested item has failed or has been suspended (for sudden death tests, an item is a 
full group of individuals): above the L50 the distribution of failures may deviate from any of the Weibull 
models and late failures will then affect the accuracy of the estimation. 

• Without experimental evidence, the comparison between the failure modes at stake for the high reliabil-
ity levels and the ones at stake for classical levels (like L10) may not be valid or weakly linked. This can 
be illustrated by the classical examples of human life where the reason to die around the L10 (~ 60 
years) is very different from the reason to die around L1 (~15 years). To that respect, the Weibull 2-pa-
rameters offers the most conservative approach among the Weibull distributions. 

Size of the data set 
• The strict minimum sample size for testing is 20 for the L10 estimation, 40 for the L5 estimation and 100 

for the L1 estimation. At these levels the variability of the results from the simulation is still high. The 

Normalized Life 
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recommended minimum size to avoid these variability leads to the following recommended minimum 
size: 30 for the L10 estimation, 50 for the L5 estimation and 200 for the L1 estimation.  

• Ensure to reach at least 20% failures among the sample set in the test (to ensure a proper fit with a 
Weibull distribution). 

• Pooling data sets is often necessary but it brings extra noise from potential variation in β introduced in 
the different tests. Only tests with close operating conditions should then be pooled to limit the risk of 
having different β. 

Statistical model 
• Use the Exponential model when a strong prior knowledge is giving reliable guess for the β value. Al-

ways use the lowest available assumption for β. 
• Use the Weibull 3-parameters model for L1 estimation in cases of very large sample sizes (at least 200 

tested items, still with 20% of the sample to failure). 
• Use the Weibull 2-parameters model in any other cases. Especially when no test data can give infor-

mation on the early failure at stake for high reliability levels, the Weibull 2-parameters distribution of-
fers the safest (more conservative) approach for the same β value. 

Extrapolation 
In the case where no robust statistical analysis can be achieved (too high reliability expectations with respect to 
the limited data available), extrapolations can be derived from estimated lower reliability levels (L10 for instance): 

• Although theoretically any level can be calculated, the statistical robustness of the L1 level is proven to 
be very hazardous. Therefore, no reliability level beyond L1 can be recommended statistically. In partic-
ular L0 must stay a pure theoretical parameter since no 100% reliability can never be guaranteed. 

• Extrapolation from lower levels than L10 (like L20 or L50) is to be avoided to limit the risk of artificially 
linking uncorrelated failure modes. 

• When extrapolating the lower bound of the confidence interval the lowest assumed β value (β = 1.1 by 
default) is to be used. 

• Estimations of reliability level higher than L5, always have associated liability risk. 

System life 
The system life is a special case where high reliability levels are needed not much for the individual components 
but rather to achieve usable moderate reliability levels for the entire system. 

In addition to the above recommendations, a dedicated analysis of the whole system (like a FMEA – Failure Mode 
and Effects Analysis) can help enlightening the dependencies between the sub-systems. Otherwise, extensive tests 
are needed, however sometimes only extrapolations are feasible. As for the extrapolation, a less conservative ap-
proach for the β value can be used (β = 1.5 typically). This less conservative extrapolation should only be used for 
the system life and should not be used for high reliability level for an individual sub-system. 

Benefit of high reliability level estimations 
Although most of the content of this article is aiming at giving practical limitations to the use of life extrapolation 
estimation of high reliability levels can also be beneficial once used properly. 

• When extensive field data is available (getting then information on potential early failure modes), high 
reliability estimations can be obtained safely from this field data directly 

• When field data allows to exclude the type of deviation illustrated in Figure 3a, assuming a Weibull 2-
parameters with a low beta (1.1) appears to be a safe approach so that extrapolation can be possible 
from test data and the corresponding L10 estimation. 

• Once established, such high reliability level estimations can serve tracking deviation in an application. 
Indeed, any early failure occurring before a high reliability value should serve as warning sign that de-
viations in the application (operating conditions, mounting…) are taking place. 

• High reliability levels are also useful and even strongly necessary to derive estimation of system life, as 
explained in Appendix A. 
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5. Discussion 
Estimation of high reliability levels is very challenging via standard testing. Although different statistical distri-
butions are available their performance is always limited to a minimum number of data. In this paper, quantitative 
statements are given for this minimum number of data together with a comparison among the main distributions. 
From this comparison, the standard Weibull 2 parameters appears to be the most robust unless extensive testing 
data are available. 

Apart from the choice of the statistical distribution, a key limitation for the use of high reliability levels is the risk 
to derive estimates based on tests which produce different failure modes from the ones in control of those high 
reliability levels. There, the Weibull 2-parameters offers also the most conservative approach. 

A short description of the main statistical aspects of bearing life estimation from endurance tests has been given. 
The objective is to assess whether or not (and why) extrapolation to high reliability levels in bearing life estimation 
can be dangerous. From the analysis presented here, it is clear that the accuracy of the estimation decreases with 
the increase of the reliability level when using a fixed number of tested samples. Very high reliability levels require 
very high number of tested samples, which becomes economically prohibiting. Good practices have been revisited 
in order to minimize the risks to promote severe mismatches between the estimation of high reliability levels and 
true values. A potential solution to safety use extrapolation methods, like the one promoted in the ISO 281 standard 
[11] is to apply it together with the extrapolation factors described in Table 2 (Appendix B). 

The potential weakness of the extrapolation comes from the need to assume a beta (β) value and also the assump-
tion that the Weibull fit (2 or 3 parameters with a fixed ratio α between L0 and L10) stays valid even towards high 
reliability levels. The sensitivity to the fixed values α and β weakens the accuracy of the extrapolations. The high 
reliability levels do not come directly from actual data but appear as a function of the L10 parameter. Typically, a 
wrong assumption on β has an important effect onto the result. For instance, an error of 10% on β, in the case of a 
2-parameters Weibull, leads to an error up to more than 20% on the L1 parameter. The precise percentage depends 
on the β value and varies from 24% to 11% when β varies from 1 to 2. Likewise, an error of 20% on the true β 
value leads to an error on L1 from 48% to 22% when β varies from 1 to 2. It needs to be added that such extrapo-
lation should never be done starting from lower reliability level than the L10, for instance from the L20 or the L50. 
Then, the sensitivity to the β slope becomes inapplicable. 

A second key issue with such extrapolations is the validity of the statistical model towards the tail (L0). Even if 
experimental data fit well with one of the chosen statistical distributions around L10, whether this model fits with 
the reality down to the L5, L1 and further or not is a completely different issue. These high reliability levels corre-
spond to early failures that could derive from a different physical mechanism than the later failures.  

A practical and illustrative example can be given about such extrapolation for L1 (assumed to be equal to 0.25 x 
L10 in [11]). Consider the pooled experimental data illustrated in Figure 3. Even if the beta slope is matching well 
with the assumption made in [11] (β~1.5), the left hand side plot (a) (reproduced in Figure 4) shows a clear dis-
crepancy between the extrapolation rule L1 = 0.25 x L10 and the behavior of the early failures. The value 0.25 x 
L10. corresponds more to the L4, which could create a severe liability issue with a failure rate 4 times bigger than 
expected. This example illustrates also the risk of having early failures off respect of the main Weibull distribution. 

An adding argument against the undifferentiated use of the extrapolation rule from [11] is related to the beta 
parameter. Although [11] assumes a 3-parameters Weibull and a value β=1.5, it is proven not to be the case under 
all operating conditions. From [16], a 2-parameter Weibull with β~1.1 is better suited. From Table 3 the corre-
sponding extrapolation factor should be L1 = 0.12 x L10. In this case the value 0.25 x L10. corresponds more to the 
L2, which could create a liability issue with a failure rate 2 times larger than expected. 

Those two concrete examples illustrate the industrial risk taken when using carelessly the high reliability extrap-
olation rule from [11]. If instead of 1.5, a Beta of 1.1 would be considered, a more conservative extrapolation 
could be derived as shown in Appendix B. 
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Figure 4 - High reliability deviation with endurance test data performed in-house on CRB. 
 

6. Conclusion 
In general, extrapolation from more moderate reliability levels (like L10) is possible but can potentially lead to 
liability issues. Such extrapolation needs to apply  the lowest assumed β value (β = 1.1 by default, β = 1.5 for 
system life). 

This is not in contradiction with extensive studies proving a better fit with the Weibull 3 parameters distribution 
(and therefore higher values for L1), but it highlights the need to have a conservative approach based on limitations 
of the estimation techniques when confronted to realistic test sample sizes. Indeed, the Weibull 3-parameters re-
quires too large sample sizes to be practically used with confidence and may lead then to an overestimation of the 
high reliability levels as mentioned in Table 2 and Table 3. 

 

The main conclusions from this investigation are: 

• Extrapolation or estimation of reliability levels higher than L1 [following discrepancies already ob-
served at L1 level - Figure 3] are hazardous and leading to severe industrial risks. 

• Robust estimation of high reliability levels from test or field data requires a minimum number of data 
(200 for L1, 50 for L5) with 20% of the sample sets corresponding to failures [see Table 1] 

• Extrapolation rules from the L10 estimation or L10 calculation from an established life model must use a 
2-parameter Weibull assumption with a low Beta (1.1) [see Table 3, Appendix B] 
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A Appendix - Bearing life Statistical models 
 

The Weibull statistical distribution is often used to model the randomness of physical phenomenon like fatigue of 
materials or mechanical product life. It has been introduced in the setting of material strength by Waloddi Weibull 
[2] and extended to a wide range of experimental data [8]. The Weibull distribution is widely used together with 
its special case, the exponential distribution. The Weibull distribution itself possesses two main forms, one with 2 
parameters and one with 3 parameters. The 2 parameters Weibull distribution turns into an exponential distribution 
when the shape parameter β equals to 1. 

In addition, a new Weibull-based distribution has been recently introduced [17] which allows having a non-zero 
minimum life (life reached with 100% probability) that could be statistically estimated using the maximum likeli-
hood method. 

The purpose of the current section is to present the 3 standard statistical distributions, their scope of applications 
and their restrictions. In all 3 definitions, L denotes the random variable standing for the Life duration. The distri-
butions are given with their two most common expressions, the mathematical form with η (or λ) as a scale param-
eter, and the engineering form, using the 10th life percentile L10 as a scale parameter. A life percentile Lp is the 
time that p% of a large population will not survive. Equivalently, Lp is the time that (100 − p)% of a large popula-
tion will survive. 

A.1 Exponential 
Weibull 1-parameter corresponds to the exponential distribution: 

𝑃𝑃(𝐿𝐿 > 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝜆𝜆𝜆𝜆) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜆𝜆 > 0    (A1) 

This is a special case of the Weibull 2 parameters distribution with β=1, but it can serve to study the case of a 
Weibull 2-parameters on which the slope parameter is fixed at a known value. 

A.2 Weibull 2 parameters 
Weibull 2-parameters Weibull distribution: 

𝑃𝑃(𝐿𝐿 > 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 �− �𝑥𝑥
𝜂𝜂
�
𝛽𝛽
� = 0.9�

𝑥𝑥
𝐿𝐿10

�
𝛽𝛽

 with η, β, L10 > 0 ;    (A2) 

The Weibull 2-parameters is the most used distribution for bearing life. It combines high flexibility due to its two 
parameters while keeping a simple expression. This simplicity makes it possible to develop statistical estimation 
techniques with proven accuracy and precision [18, 19, 17]. Past [9] and recent (Section 4.3) extensive pooling of 
test data gives further evidence for the matching between experimental life data and the Weibull distribution, at 
least in the main life span. 

The main drawback of the 2-parameters Weibull model is the absence of minimum life (minimum life is a time 
that all items will survive with 100% probability). Affecting mainly 2 cases: 

• When high reliability level is required for a critical application, having a zero minimum life may lead to a too 
conservative estimation for reliability levels strictly higher than L10. 

• In a mechanical system with several bearings, the whole system life is severely affected by the absence of mini-
mum life. Considering a system with 10 identical bearings in series (the system fails as soon as one bearing fails), 
a weakest link approach makes the L10 life of the system close to the L1 of an individual bearing. Therefore a too 
conservative estimate of this L1 has a strong consequence of the L10 estimation of the system. The system life is 
calculated as follow: 
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𝐿𝐿10 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) =  
𝐿𝐿10(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑁𝑁
1
𝛽𝛽�

   (𝐴𝐴3) 

 

 
Figure 5: System life (L10 of the system) as a factor of the L10 value of an individual bearing and its dependency on the number 
of bearings in the system (using equation Eq A.3) 
 

Figure 5 depicts the behavior of equation A3 for two different values of 𝛽𝛽 and with increasing number of bearings 
(n) in the system. 

 

The individual bearing life level corresponding to the L10 (Syst.) becomes 

100 × �1 − 0.9�
𝐿𝐿10(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.)
𝐿𝐿10(𝐼𝐼𝐼𝐼𝐼𝐼.) �

𝛽𝛽

� = 100 × �1 − 0.91 𝑛𝑛� �  (A4) 

which neither depends only on n, β nor L10. The exponential decay is illustrated in Figure 6. 

Please notice that this figure shows the theoretical usefulness of obtaining knowledge on the L1 or even higher 
levels for an individual bearing in order to estimate the L10 of a system. Another practical solution is to study in 
details the system and its interdependency between bearings. If some dependency can be proven, this will have a 
significant impact on the system reliability because a failure root cause will then be counted only once. The draw-
back of such analysis is that it must be made case by case through a FMEA (Failure Mode and Effect Analysis). 
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Figure 6.  Individual life percentile corresponding to the system L10 life, as calculated from Eq. A.4 
When prior knowledge allows to assume a fixed β , the Weibull 2-parameters can be turned into an exponential 
distribution (in order to use the same estimation techniques). Knowing β, the random variable Lβ follows an expo-
nential distribution with scale parameter: 

𝜆𝜆 =
1
𝑁𝑁𝛽𝛽 =

log (0.9)

𝐿𝐿10
𝛽𝛽   (𝐴𝐴5) 

 

A.3 Weibull 3 parameters 
Weibull 3-parameters distribution: 

𝑃𝑃(𝐿𝐿 > 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 �− �𝑥𝑥−𝐿𝐿0
𝜂𝜂
�
𝛽𝛽
� = 0.9�

𝑥𝑥−𝐿𝐿0
𝐿𝐿10−𝐿𝐿0

�
𝛽𝛽

 with η, β, L10 > L0 ≥ 0 .   (A6) 

The Weibull 3-parameters is similar to the Weibull 2-parameters. The extra parameter L0 offers a great flexibility 
for high reliability levels and therefore a better fit can be obtained between extensive experimental data and 
Weibull 3-parameters curves. The main drawback of this distribution is the absence of known bias correction 
techniques for the life parameters and the lack of robustness of the commercial Maximum Likelihood techniques 
[20]. This point stays valid even if the ratio L10/L0 is fixed (having then two unknown parameters). In practice, the 
L0 parameter is estimated via curve fitting (or equivalent methods) and once L0 is fixed, data can be treated as 
shifted 2-parameters Weibull for which standard unbiased estimation can be performed. Such an approach relies 
strongly on the accuracy of the L0 estimation. 
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B Appendix. Extrapolation methods for the estimation of high reliability levels 
The most usual life percentile that is accurately estimated is the L10. A way to obtain higher reliability estimation 
is via extrapolation of the L10 one. This is done by fixing all the model parameters once L10 is known. This is the 
method used in the ISO 281 [11, 7] 

The extrapolation factor is defined as the ratio between the target reliability level and the reference one (usually 
L10). Table 2 and Table 3 present a matrix with the extrapolation factors (obtained from Eq. 7) for the Weibull 
distributions for a specific choice of parameters: the scale factor L10 is fixed at 1, the slope β fixed at 1.5 (Table 2) 
and 1.1 (Table 3) and α = 0.05. 

In terms of reliability levels, the list from Table 2 and Table 3 is taken from ISO 281 [11]. Although theoretically 
any level can be calculated, the statistical robustness of the L1 level will already be proven to be very hazardous 
(Sections 3). Therefore, no reliability level beyond L1 can be recommended statistically. In particular L0 must stay 
a pure theoretical parameter since no 100% reliability can be guaranteed. 

From a practical point of view, if no complete statistical assessment can be given (lack of data, different early 
failure mode, etc), it stays possible to extrapolate calculated L10 from life model or confidence intervals using an 
assumption for β. As proven in Sections 3, their sensitivity to the chosen value for the fixed parameters is even 
higher. Therefore such extrapolation is not a safe process and whenever needed the most conservative assumption 
for β should be taken (low β = 1.1).  

 

Reliability level Weibull 2 Weibull 3 

L10 1 1 

L5 0.62 0.64 

L2 0.33 0.37 

L1 0.21 0.25 

L0.1 0.045 0.093 

L0.05 0.028 0.077 

L0 0 0.05 

Table 2. Extrapolation factors towards several reliability levels using β=1.5 
 

Reliability level Weibull 2 Weibull 3 

L10 1 1 

L5 0.52 0.54 

L2 0.22 0.26 

L1 0.12 0.16 

L0.1 0.015 0.064 

L0.05 0.0077 0.057 

L0 0 0.05 

Table 3. Extrapolation factors towards several reliability levels using β=1.1 
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Abstract 
A detailed study of Rosemann’s reliability model has been conducted. This model is very flexible and uses four 
parameters:  (or L10) and  (as in a standard two-parameter Weibull model), but also L0 and an exponent c. When 
c is infinite or very large (100 for example), Rosemann’s model behaves as a three-parameter Weibull model, L0 
being then a minimum life. When c=1, Rosemann’s model corresponds to the two-parameter model but using c > 
1 (c=2, 3 or 10 for example) allows the life to be smaller than L0, denying therefore the existence of a minimum 
life. When defining randomly a number Fi, i=1 to N, varying in a uniform manner between 0 and 1, and when 
sorting the N values of Fi in an ascending order, one can calculate analytically or numerically the probability P of 
having Fi smaller than a given value F, and vice-versa, so that median value of Fi (corresponding to P = 0.5) can 
be obtained, as well as the values corresponding to P = 0.05 or 0.95 used for defining the lower and upper bounds 
of the 90 % variation range of Fi. When assigning F to the cumulative failure probability of a life, the randomly 
generated values of Fi can be used for simulating an experimental database and calculating the life corresponding 
to a given set of inputs (,  , L0 and c), but also understanding its 90 % variation range. 

Several curve-fitting techniques (Method 1 and 2) have been developed and tested for extracting the four un-
knowns. Using a few examples, it has been found that the individual accuracy on L0 and c can be poor while the 
final match between curve-fitted and experimental life is satisfactory when using the set (L0,c). In this case, the 
model cannot then be extrapolated to very low F values. This is due to some couplings observed between L0 and 
c when trying to match a set of data observed within the confidence range, set of data matched using either a too 
large value of L0 compensated by a too small value of c, or vice-versa. 

The latter statement has been confirmed by conducting 10,000 Monte Carlo simulations and corresponding curve-

fittings for defining the median value and 90 % confidence intervals of the ratios 10 0

10_ 0_

, , &
cf cf cf cf

L L c

L L c




, 

the last two being of particular interest. 

If the median ratio is often close to 1, its confidence interval on 0

0_

&
cf cf

L c

L c
can be large when N is small (N ≤ 

100 for example), mainly because any values of L0 can be accepted when the curve-fitted value of c is equal or 
close to 1, illustrating some redundancy among Rosemann’s four parameters. 

It is therefore concluded that although powerful and very flexible, Rosemann’s model is not easy to use in practical 
situations when dealing with a reduced number of bearing failures (small N number). 

An alternative a “New” curve-fitting technique and model (also using four parameters) will be suggested, their 
advantages being that only two simple linear curve-fitting could be conducted. 
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Introduction  
In the context of his cooperation with the IMKT department of Leibniz University, Dr. Houpert was asked by Prof. 
Poll to offer some comments about a paper issued by Prof. Rosemann [1]. His paper suggests a more flexible and 
powerful reliability model using 4 parameters (, , L0 and c described later) instead of the standard 2 ( and ) 
or 3 (,  and L0) parameter Weibull model used for example by Houpert [2] and Kotzalas [3] respectively.  

Rosemann’s reliability model has been further studied and the objectives of this paper are to share some results 
obtained, starting with a short description of Rosemann’s 4 parameter model and its behavior when varying the 
third and fourth parameters L0 and c especially.  

When generating N random values of the cumulative failure density F (0<F<1) and sorting these N values of Fi in 
an ascending order (i=1 to N), one can calculate N values of failed bearing life texp_i, (texp_i being defined as a 
function of Fi and Rosemann’s 4 parameters), simulating hence an endurance database corresponding to a given 
set of N values of texp_i  defined with Rosemann’s 4 input parameters.  

An interesting study of Fi has first been conducted for calculating the cumulative density Pi(F) as a function of F, 
hence the probability Pi of having the ith value Fi smaller than a given F value. Novel analytical relationships of 
Pi(F) will be given for the first 10 and last 10 values of Pi for example. As a novelty (to the authors at least), Pi(F) 
as well as its inverse value Fi(P) will also be calculated numerically using the incomplete beta and inverse beta 
function respectively for any of the N values of Fi so that the median values of Fi (also called median rank and 
corresponding to P = 0.5) will be compared to approximated values suggested in the literature. The median value 
of Fi will be used for defining the median values of texp_i. Similarly, the values of Fi corresponding to P=0.05 or 
0.95 can be calculated and used for defining the 90% range of Fi, hence also the 90 % range of texp_i, quite useful 
information to share for understanding possible bearing life scatters as a function of N and the order number i. 

The next challenge was to define appropriate curve-fitting techniques for defining the 4 Rosemann parameters and 
two possible approaches (Method 1 and 2) will be described using a few examples. 

Knowing the confidence intervals associated to each of the four Rosemann parameters is only possible by con-
ducting Monte Carlo simulations, conducting for example 10,000 times such a curve-fitting exercise, a task con-
ducted by Dr. Clarke from SMT. 

At the end of this paper, the authors are finally able to fully describe the pros and cons of Rosemann’s model with 
some comment about its usefulness in practical cases. 
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Miscellaneous reliability models 
Bearing life is usually described using a Weibull model in which the cumulative failure probability F is described 
as a function of the time t and two or three parameters.  

F is therefore the probability of observing a bearing failure at time t. 

The two parameter Weibull (unknowns  and ) distribution reads, see Houpert detailed study conducted in [2]: 

1 exp
t

F




  
    

   
           (1) 

where is called the characteristic life and  is the Weibull slope.  

When fixing F to 0.1 (or the survival probability to 0.9), one defines the life L10 used for defining : 
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The three parameter Weibull (unknowns: ,  and L0) assumes the existence of a minimum life L that is always 
exceeded even when considering very low values of F. Its cumulative distribution reads: 
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  (3) 

Defining L0 is challenging and requires analyzing a large database including very low values of F, hence a large 
number N of failed bearings. Kotzalas suggested L0/L10 = 0.221 in [3] while a more conservative value equal to 
0.05 is suggested in ISO document [4] by the ISO bearing life working committee. Obviously, L0/L10 can be a 
function of the bearing quality, number of bearing in the database and probably bearing operating conditions, see 
Tallian [5], Snare [6] and Takata [7]. For the sake of simplicity, one will adopt in this paper a fixed ratio L0/L10  
(L0/L10 = 0.2 for example) although it is difficult to justify L0 to be simply proportional to L10 irrespective of the 
operating conditions and steel quality. 

Rosemann [1] disputes the existence of L0 and any physical discontinuities, recognizing however larger bearing 
life at low F values relative to the ones obtained using a two-parameter model. He suggested a more flexible four 
parameter model. Rosemann’s general four parameter Weibull (unknowns:  ,  , L0 and c) cumulative distribution 
reads: 
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Behavior of Rosemann’s model 
Rosemann’s model is indeed very flexible since it covers the two parameter Weibull model when c=1 and the three 
parameter models when c is very large (theoretically c=∞; in practice: c > 100 for example), but also all possible 
trends between these two extremes cases when 1< c <100, see Fig. 1 obtained using a Weibull plot, a scan of F 
from 1E-6 to 0.95 and L0/L10=0.2 with c = 1, 2, 3 and 10. The 3 parameter Weibull curve is also shown. 

 

Fig. 1: Behavior of the four parameter Rosemann’s model 

 

The linear behavior is indeed observed when c = 1, while non-linear curves are observed when c >1, reaching 
asymptotically the 3 parameter Weibull curve when c is very large. 

The ratio t/L10 is also called the reliability factor a1 plotted next while reversing the x and y axis. 

 

Fig. 2: Rosemann’s reliability factor. 

 

Study of Fi sorted in ascending order 
Simulating randomly a set of N values of life t starts with the generation of N values of F (0 <F <1) to sort in an 
ascending order. One can calculate the density f and cumulative distribution P of each ith number Fi. 

For the sake of writing simplicity, it has been decided to attach next the index i (representing the ith value) to the 
cumulative probability P (hence not on F as done previously). 

When generating N numbers of F (0< F <1) and sorting them in an ascending order, one can calculate the density 
f and cumulative distribution Pi of each ith number F. The density distribution f(F) corresponding to order ith value 
of F is: 
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The cumulative density Pi (probability that the ith sorted random value is smaller or equal to F) is: 
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          (6) 

Using analytical integration and integration by part approaches, a set of analytical polynomial relationships have 
been developed in appendix 1 for a few first and last values of I, see Eq. (39), (48), (51) and (52). 

The next Figure shows the calculated values of Pi corresponding to the first 10 values when N = 1000: 

 

Fig. 3: First 10 values of Pi corresponding to N = 1000. 

 

Let us now come back to the index i attached to the ith value of F.  

All previously defined analytical relationships can be used for solving numerically Fi=Fi_P=PTargeted corresponding 
to a targeted value of P, for example P = 0.5 when defining the median value of Fi, also called median rank, but 
also its lower and upper bounds using P = 0.05 or P = 0.95, hence defining the 90 % range of Fi. 

There is however no need of conducting this tedious exercise because another exact approach is described next 
(known by reliability specialists but re-discovered by the authors with the help of Dr. Sicard [8]). 

The exact approach is numerical and easy to program in Excel for example, requiring to simply use the incomplete 
beta and inverse beta functions. 

The integral  
0

. 1 .

F

bax x dx  corresponds to the incomplete beta function, itself calculated using the standard 

beta function and a ratio of gamma functions, such ratio being calculated numerically using the exponential of a 
sum of gammalog functions.  

It should also be pointed out that the gamma function corresponds to a factorial number when using integers. As 
a consequence, the ratio of factorials (in front of the integral when calculating P) cancels out with the ratio of 
gamma functions, so that the final relationships (easy to program In Excel for example) read: 
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Any targeted value of P can now be used (P=0.05 or 0.5 or 0.95 for example) for calculating all N values of Fi 
with their medium lower and upper bounds, see next Figure. 

 

Fig. 4: Exact median, 5% lower and 95% upper bounds of Fi (for N=1000) 

 

The median value can now be compared to some suggested approximations. 

Miscellaneous simplified relationships for calculating the median value Fmedian have been provided in [2], the first 
one having been called in [2]  ‘exact’ while it is understood today that the first one corresponded in reality to 
Johnson’s approximated relationship, [9] and [10]. A set of approximated relationships for Fmedian can now be 
tested: 

11 1

_ 0.5

_ 0.5

_ 0.5

1
1: 1 2 . 2 1 ( 20)

1

1
0.30685 0.3863*

1
2 :

0.305
:

NN
i P switch switch

i P switch

i P

i
Johnson F used always while it should be when N N with N

N

i
i

N
Johnson F when N N

N
i

other approx F
N

   
 







            
      






_ 0.5

0.39
0.3

:
0.4i P

i
Benard F

N






(8)  

Johnson’s initial suggestion is to use Johnson1 relationship when N < Nswitch = 20, but a slightly improved accuracy 
has been observed (with N=1000) when not using Nswitch.  The accuracy is defined as abs(error) with error = (F-
Fexact)/ Fexact. Results are shown in the next Table: 
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Table 1: Exact median, 5% lower and 95% upper bounds of Fi (for N=1000), median values compared to suggested 
approximations (for N=1000) 

Johnson1 approximation is quite accurate with a maximum error equal to 0.00879 when i = 2 and N=1000. 

While testing the case N=10, the approximation called other approximation was found slightly more accurate, see 
next Table. 

N‐‐‐> 1000

max error‐‐‐> 8.79E‐03 8.93E‐03 9.87E‐03 1.28E‐02
i F_P=0.05 F_P=0.5 F_P=0.95 abs(error_Johnson1) abs(error_Johnson2) abs(error_other) abs(error_Benard)

1 5.1291979E‐05 6.9290701E‐04 2.9912495E‐03 4.6941E‐16 3.5068E‐04 2.6296E‐03 9.8326E‐03
2 3.5547613E‐04 1.6777779E‐03 4.7349936E‐03 8.7872E‐03 8.9317E‐03 9.8710E‐03 1.2840E‐02
3 8.1817540E‐04 2.6731593E‐03 6.2822845E‐03 7.0985E‐03 7.1890E‐03 7.7773E‐03 9.6370E‐03
4 1.3674363E‐03 3.6708271E‐03 7.7352447E‐03 5.6993E‐03 5.7651E‐03 6.1927E‐03 7.5442E‐03
5 1.9721531E‐03 4.6693423E‐03 9.1299526E‐03 4.7158E‐03 4.7675E‐03 5.1029E‐03 6.1633E‐03
6 2.6161408E‐03 5.6682616E‐03 1.0484077E‐02 4.0073E‐03 4.0497E‐03 4.3255E‐03 5.1972E‐03
7 3.2897874E‐03 6.6674044E‐03 1.1807823E‐02 3.4774E‐03 3.5134E‐03 3.7474E‐03 4.4870E‐03
8 3.9868512E‐03 7.6666837E‐03 1.3107715E‐02 3.0678E‐03 3.0991E‐03 3.3021E‐03 3.9440E‐03
9 4.7030132E‐03 8.6660523E‐03 1.4388225E‐02 2.7423E‐03 2.7699E‐03 2.9492E‐03 3.5159E‐03
10 5.4351401E‐03 9.6654825E‐03 1.5652574E‐02 2.4778E‐03 2.5024E‐03 2.6629E‐03 3.1699E‐03
11 6.1808741E‐03 1.0664957E‐02 1.6903175E‐02 2.2586E‐03 2.2809E‐03 2.4260E‐03 2.8846E‐03
12 6.9383880E‐03 1.1664465E‐02 1.8141892E‐02 2.0742E‐03 2.0946E‐03 2.2269E‐03 2.6454E‐03
13 7.7062327E‐03 1.2663997E‐02 1.9370199E‐02 1.9169E‐03 1.9356E‐03 2.0573E‐03 2.4419E‐03
14 8.4832353E‐03 1.3663550E‐02 2.0589287E‐02 1.7811E‐03 1.7985E‐03 1.9110E‐03 2.2668E‐03
15 9.2684310E‐03 1.4663118E‐02 2.1800132E‐02 1.6629E‐03 1.6790E‐03 1.7836E‐03 2.1145E‐03
16 1.0061015E‐02 1.5662698E‐02 2.3003549E‐02 1.5589E‐03 1.5739E‐03 1.6717E‐03 1.9808E‐03
17 1.0860306E‐02 1.6662289E‐02 2.4200226E‐02 1.4667E‐03 1.4808E‐03 1.5726E‐03 1.8625E‐03
18 1.1665724E‐02 1.7661889E‐02 2.5390749E‐02 1.3845E‐03 1.3978E‐03 1.4842E‐03 1.7571E‐03
19 1.2476769E‐02 1.8661495E‐02 2.6575623E‐02 1.3107E‐03 1.3233E‐03 1.4048E‐03 1.6627E‐03
20 1.3293006E‐02 1.9661108E‐02 2.7755286E‐02 1.2441E‐03 1.2560E‐03 1.3333E‐03 1.5775E‐03
25 1.7440156E‐02 2.4659238E‐02 3.3587428E‐02 9.8951E‐04 9.9889E‐04 1.0598E‐03 1.2525E‐03
30 2.1674784E‐02 2.9657436E‐02 3.9331876E‐02 8.1838E‐04 8.2609E‐04 8.7625E‐04 1.0348E‐03
35 2.5976079E‐02 3.4655674E‐02 4.5009536E‐02 6.9548E‐04 7.0202E‐04 7.4448E‐04 8.7870E‐04
40 3.0330486E‐02 3.9653936E‐02 5.0634007E‐02 6.0296E‐04 6.0861E‐04 6.4532E‐04 7.6136E‐04
50 3.9163536E‐02 4.9650503E‐02 6.1758579E‐02 4.7292E‐04 4.7733E‐04 5.0602E‐04 5.9668E‐04
60 4.8124364E‐02 5.9647103E‐02 7.2755267E‐02 3.8590E‐04 3.8950E‐04 4.1284E‐04 4.8663E‐04
70 5.7183468E‐02 6.9643723E‐02 8.3653620E‐02 3.2359E‐04 3.2660E‐04 3.4614E‐04 4.0791E‐04
80 6.6321578E‐02 7.9640355E‐02 9.4472929E‐02 2.7677E‐04 2.7934E‐04 2.9603E‐04 3.4879E‐04
90 7.5525276E‐02 8.9636994E‐02 1.0522663E‐01 2.4031E‐04 2.4254E‐04 2.5702E‐04 3.0278E‐04
100 8.4784768E‐02 9.9633640E‐02 1.1592451E‐01 2.1111E‐04 2.1306E‐04 2.2577E‐04 2.6594E‐04
200 1.7936803E‐01 1.9960021E‐01 2.2091464E‐01 7.9357E‐05 8.0090E‐05 8.4849E‐05 9.9892E‐05
300 2.7612277E‐01 2.9956685E‐01 3.2373309E‐01 3.5319E‐05 3.5645E‐05 3.7760E‐05 4.4448E‐05
400 3.7426088E‐01 3.9953351E‐01 4.2516812E‐01 1.3280E‐05 1.3402E‐05 1.4197E‐05 1.6711E‐05
500 4.7351773E‐01 4.9950017E‐01 5.2548440E‐01 5.2853E‐08 5.3340E‐08 5.6505E‐08 6.6507E‐08
500.5 4.7401666E‐01 5.0000000E‐01 5.2598334E‐01 1.1102E‐15 8.8818E‐16 8.8818E‐16 8.8818E‐16
501 4.7451560E‐01 5.0049983E‐01 5.2648227E‐01 5.2748E‐08 5.3234E‐08 5.6392E‐08 6.6374E‐08
600 5.7382341E‐01 5.9946683E‐01 6.2475185E‐01 8.7628E‐06 8.8435E‐06 9.3682E‐06 1.1027E‐05
601 5.7483188E‐01 6.0046649E‐01 6.2573912E‐01 8.8361E‐06 8.9175E‐06 9.4466E‐06 1.1119E‐05
700 6.7524639E‐01 6.9943348E‐01 7.2290202E‐01 1.5052E‐05 1.5191E‐05 1.6092E‐05 1.8942E‐05
701 6.7626691E‐01 7.0043315E‐01 7.2387723E‐01 1.5106E‐05 1.5245E‐05 1.6150E‐05 1.9010E‐05
800 7.7804857E‐01 7.9940012E‐01 8.1967303E‐01 1.9749E‐05 1.9931E‐05 2.1116E‐05 2.4859E‐05
801 7.7908536E‐01 8.0039979E‐01 8.2063197E‐01 1.9790E‐05 1.9972E‐05 2.1159E‐05 2.4911E‐05
900 8.8300847E‐01 8.9936670E‐01 9.1428652E‐01 2.3330E‐05 2.3546E‐05 2.4951E‐05 2.9389E‐05
901 8.8407549E‐01 9.0036636E‐01 9.1521523E‐01 2.3361E‐05 2.3577E‐05 2.4984E‐05 2.9428E‐05
911 8.9477337E‐01 9.1036301E‐01 9.2447472E‐01 2.3662E‐05 2.3881E‐05 2.5307E‐05 2.9812E‐05
921 9.0552707E‐01 9.2035965E‐01 9.3367842E‐01 2.3950E‐05 2.4172E‐05 2.5616E‐05 3.0182E‐05
925 9.0984627E‐01 9.2435830E‐01 9.3734219E‐01 2.4061E‐05 2.4284E‐05 2.5736E‐05 3.0325E‐05
931 9.1634638E‐01 9.3035628E‐01 9.4281653E‐01 2.4223E‐05 2.4448E‐05 2.5911E‐05 3.0535E‐05
941 9.2724473E‐01 9.4035290E‐01 9.5187564E‐01 2.4478E‐05 2.4706E‐05 2.6187E‐05 3.0867E‐05
950 9.3713660E‐01 9.4934984E‐01 9.5994553E‐01 2.4686E‐05 2.4916E‐05 2.6413E‐05 3.1144E‐05
951 9.3824142E‐01 9.5034950E‐01 9.6083646E‐01 2.4707E‐05 2.4938E‐05 2.6437E‐05 3.1173E‐05
961 9.4936599E‐01 9.6034606E‐01 9.6966951E‐01 2.4897E‐05 2.5130E‐05 2.6646E‐05 3.1437E‐05
966 9.5499046E‐01 9.6534433E‐01 9.7402392E‐01 2.4968E‐05 2.5202E‐05 2.6727E‐05 3.1545E‐05
971 9.6066812E‐01 9.7034256E‐01 9.7832522E‐01 2.5013E‐05 2.5249E‐05 2.6781E‐05 3.1626E‐05
975 9.6525748E‐01 9.7434113E‐01 9.8171911E‐01 2.5021E‐05 2.5258E‐05 2.6797E‐05 3.1663E‐05
976 9.6641257E‐01 9.7534076E‐01 9.8255984E‐01 2.5017E‐05 2.5255E‐05 2.6796E‐05 3.1667E‐05
981 9.7224471E‐01 9.8033889E‐01 9.8670699E‐01 2.4952E‐05 2.5190E‐05 2.6740E‐05 3.1637E‐05
982 9.7342438E‐01 9.8133850E‐01 9.8752323E‐01 2.4925E‐05 2.5164E‐05 2.6715E‐05 3.1618E‐05
983 9.7460925E‐01 9.8233811E‐01 9.8833428E‐01 2.4893E‐05 2.5132E‐05 2.6684E‐05 3.1592E‐05
984 9.7579977E‐01 9.8333771E‐01 9.8913969E‐01 2.4853E‐05 2.5092E‐05 2.6646E‐05 3.1559E‐05
985 9.7699645E‐01 9.8433730E‐01 9.8993899E‐01 2.4804E‐05 2.5044E‐05 2.6600E‐05 3.1518E‐05
986 9.7819987E‐01 9.8533688E‐01 9.9073157E‐01 2.4745E‐05 2.4985E‐05 2.6543E‐05 3.1466E‐05
987 9.7941071E‐01 9.8633645E‐01 9.9151676E‐01 2.4674E‐05 2.4914E‐05 2.6473E‐05 3.1402E‐05
988 9.8062980E‐01 9.8733600E‐01 9.9229377E‐01 2.4587E‐05 2.4827E‐05 2.6388E‐05 3.1321E‐05
989 9.8185811E‐01 9.8833554E‐01 9.9306161E‐01 2.4480E‐05 2.4720E‐05 2.6283E‐05 3.1221E‐05
990 9.8309682E‐01 9.8933504E‐01 9.9381913E‐01 2.4348E‐05 2.4588E‐05 2.6152E‐05 3.1096E‐05
991 9.8434743E‐01 9.9033452E‐01 9.9456486E‐01 2.4182E‐05 2.4423E‐05 2.5989E‐05 3.0938E‐05
992 9.8561178E‐01 9.9133395E‐01 9.9529699E‐01 2.3973E‐05 2.4214E‐05 2.5781E‐05 3.0735E‐05
993 9.8689228E‐01 9.9233332E‐01 9.9601315E‐01 2.3702E‐05 2.3943E‐05 2.5512E‐05 3.0471E‐05
994 9.8819218E‐01 9.9333260E‐01 9.9671021E‐01 2.3341E‐05 2.3583E‐05 2.5153E‐05 3.0117E‐05
995 9.8951592E‐01 9.9433174E‐01 9.9738386E‐01 2.2844E‐05 2.3086E‐05 2.4658E‐05 2.9627E‐05
996 9.9087005E‐01 9.9533066E‐01 9.9802785E‐01 2.2123E‐05 2.2365E‐05 2.3939E‐05 2.8913E‐05
997 9.9226476E‐01 9.9632917E‐01 9.9863256E‐01 2.0998E‐05 2.1241E‐05 2.2816E‐05 2.7796E‐05
998 9.9371772E‐01 9.9732684E‐01 9.9918182E‐01 1.9026E‐05 1.9269E‐05 2.0846E‐05 2.5830E‐05
999 9.9526501E‐01 9.9832222E‐01 9.9964452E‐01 1.4768E‐05 1.5011E‐05 1.6589E‐05 2.1579E‐05
1000 9.9700875E‐01 9.9930709E‐01 9.9994871E‐01 6.6660E‐16 2.4316E‐07 1.8233E‐06 6.8178E‐06
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Table 2: Exact median, 5% lower and 95% upper bounds of Fi (for N=1000), median values compared to suggested 
approximations (for N=10) 

Generating random databases (simulating experimental databases) of texp_i 

Having defined randomly N values of i, sorted Fi in an ascending order and understood its median value, 5% lower 
and 95% upper bounds, it is now possible to calculate texp_i  using any set of ( or L10, , L0 and c) and Fi. The life 
texp_i  can then plotted versus -ln(1-Fmedian) in a standard Weibull plot (using ln(texp_i ) and ln(-ln(1-Fmedian)) and 
compared to ti  calculated with the median, lower and upper bounds of Fi, see next example and Figure obtained 
with 3 examples of randomly simulated experimental values of texp defined with:  L10 =1, = 1, L0=0.2 ,  c=2 and 
N=1000.  Zooms showing the results obtained at low and larger Fmedian values are also given. 

N‐‐‐> 10

max error‐‐‐> 5.76E‐03 3.51E‐02 5.39E‐03 7.39E‐03
i F_P=0.05 F_P=0.5 F_P=0.95 abs(error_Johnson1) abs(error_Johnson2) abs(error_other) abs(error_Benard)

1 5.1161969E‐03 6.6967008E‐02 2.5886555E‐01 2.0723E‐16 3.5062E‐02 1.1314E‐03 5.0873E‐03
2 3.6771438E‐02 1.6226273E‐01 3.9416330E‐01 5.7551E‐03 1.7010E‐02 5.3919E‐03 7.3881E‐03
3 8.7264434E‐02 2.5857472E‐01 5.0690130E‐01 3.2926E‐03 8.3374E‐03 3.1298E‐03 4.0246E‐03
4 1.5002824E‐01 3.5509997E‐01 6.0662422E‐01 1.5649E‐03 3.7690E‐03 1.4938E‐03 1.8847E‐03
5 2.2244110E‐01 4.5169416E‐01 6.9646279E‐01 4.2300E‐04 1.0006E‐03 4.0436E‐04 5.0680E‐04
6 3.0353721E‐01 5.4830584E‐01 7.7755890E‐01 3.4847E‐04 8.2428E‐04 3.3311E‐04 4.1751E‐04
7 3.9337578E‐01 6.4490003E‐01 8.4997176E‐01 8.6169E‐04 2.0753E‐03 8.2252E‐04 1.0378E‐03
8 4.9309870E‐01 7.4142528E‐01 9.1273557E‐01 1.1483E‐03 2.9077E‐03 1.0915E‐03 1.4036E‐03
9 6.0583670E‐01 8.3773727E‐01 9.6322856E‐01 1.1147E‐03 3.2946E‐03 1.0444E‐03 1.4310E‐03
10 7.4113445E‐01 9.3303299E‐01 9.9488380E‐01 0.0000E+00 2.5165E‐03 8.1205E‐05 3.6514E‐04
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Fig. 5: Example of one random simulation of an experimental database (for c=2 & N=1000) 

 

At low failure rate, the 90 % range, hence scatter of experimental points, can be quite large when c=2. The 90% 
range and scatter decrease substantially (at low F values only) as c increases, see next example obtained with c=10. 
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Fig. 6: Example of one random simulation of an experimental database (for c=10 & N=1000) 

 

It can therefore already be anticipated that when trying to curve-fit an experimental database for extracting the 4 
Rosemann parameters, it is very likely that the accuracy on L0 and c might be poor when c is small since the 90 % 
range of texp is large. 

Before trying to develop curve-fitting technics for extracting the 4 Rosemann parameters and their confidence 
intervals (using Monte Carlo simulations), one can already study the effect of N and c on the 90 % range, hence 
likely texp scatter. 

The inverse beta function can be used for easily calculating the life and life range corresponding to F<0.1 using N 
= 10000, then 1000 and 100 and several c values. 
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The range is calculated using any boundary values: P_lower = 0.05 and P_upper = 0.95 for example. Also shown 
next (on the second y axis) is the ratio R=t_P_upper/t_P_lower. 

 

Fig. 7: Calculated 90% texp range for c = 2. 

 

At low Fmedian value (or low -ln(1-Fmedian)), the ratio R can be quite large and illustrates the most likely difficulty 
of extracting accurate values of L0 and c  

For example: R = 7.86 when Fmedian=6.93E-4 

But this ratio drops to about 1.9 at Fmedian=6.93E-4 when N = 10000. 

As anticipated this ratio R drops significantly as the exponent c increases, see next examples obtained with c = 10 
and 300. 

 

 

 

Fig. 8: Calculated 90% texp range for c = 10. 



Houpert et al. – Bearing World Journal Vol. 6 (2021) page 41 – page 85 

 

 

52 

 

Fig. 9: Calculated 90% texp range for c = 300. 

 

The latter example (c = 300) simulates almost a 3 parameter Weibull model leading to an accurate estimate of L0 
when N = 1000, but not very accurate when N = 100, the ratio R remaining large and of the order of 2.2 

 

Curve-fitting technics of an experimental database 

Rosemann’s model can also be written: 

 
1

1

0 0. ln(1 )
c c

ct F L L
        
   

           (9) 

, , L0 and c being the four unknowns to define by curve-fitting. 

Note that one will also use later the following relationships: 
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           (10) 

ML approach: 

One possible approach consists of using the maximum likelihood approach (ML) developed in appendix 2 but not 
tested herein. 

The ML approach consists of maximizing the product of the density function f(t): 
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The other standard approach consists of sorting the set of experimental life texp_i in ascending order, and to use the 
median rank Fmedian_i for estimating the corresponding cumulative failure probability. A non-linear curve-fitting 
between texp_i and Fmedian_i (or Fmedian_i versus texp_i) must then be conducted for obtaining tcf_i to compare to texp_i. 

It is recommended to use the log function, hence ln(t), for putting the same weight to small and large values of 

texp_i and ratio _

exp_

cf i

i

t

t
since    _

_ exp_
exp_

ln ln lncf i
cf i i

i
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t t
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Method 1: 

One therefore needs to conduct a non-linear curve-fitting of Y =ln(t) versus X=ln(-ln(1-Fmedian)), minimizing for 
example the sum of the vertical distance between Ycf_i and Yexp_i, leading to the so-called (herein) Method 1 also 
studied in detail by Houpert in [2] with a 2 parameter Weibull model: 
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Hence: 
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    (15) 

Details of Method 1 are given in appendix 3. 

 

Method 2: 

A second approach called herein Method 2, consists of curve-fitting X versus texp and to minimize the horizontal 
distance between Xcf_i and Xi defined as:  
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Details about Method 2 are given in appendix 4. 

Prior of showing the results obtained using a few examples, the robustness of the two approaches (Method 1 and 
2) has been tested and confirmed, replacing the experiment values of texp by the exact values of t and confirming 
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that the calculated set of unknowns (a,b,L0 and c), initially estimated, does converge towards the exact set used for 
defining the exact values of t. 

The curve-fitted values of a, b, L0 and c will be compared next to the ones used as inputs for simulating our random 
set of texp_i. 

 

New curve-fitting suggestion: 

Also, following some results shown next, an alternative curve-fitting technique cited as “New” will be suggested 
at the end of this paper and fully tested in [14]. 

 

Results obtained 

One can now simulate experimental cases via a set of random values of texp obtained using a random value of F 
(instead of the median value of Fmedian) with L10 =1,  = 1, L0 = 0.2 while the exponent c will range from 2 to 100.  

Beside some problems described next and observed when ccf = 1, some numerical problems can be found in some 
seldom cases (especially when conducting 10000 or 100000 Monte-Carlo simulations) using method 1 or 2: 

 The sum S2 can decrease nicely during the first iterations and then start to increase. 
 The suggested solution or convergence may also depend on the initial guess of 4 unknowns and accepted 

tolerance. 

 

Following are a few examples of results obtained. 
For avoiding showing dense Figures, the 90 % range of texp for the first 3 and last 3 points only is shown. 

Also shown are the curve-fitted results obtained using the 2-parameter model and Fmedian > 0.05 

Si2 represents the calculated value of 2

1

N

i

i

S


 . 
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Fig. 10: Example of curve-fitted results obtained using c =2 

 

Results obtained using Method 1 and 2 differ slightly. 

In this first example, larger values of L0 are found (with Method 2 for example: 0.701 instead of 0.2) compensated 
by smaller values of c (with Method 2 for example: 1.624 instead of 2). The curve-fitted curves do however pass 
successfully through the experimental points at low Fmedian values. 

Let’s show next some additional simulations using c = 2: 
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Fig. 11: Second example of curve-fitted results obtained using c =2 

 

Here, the curve-fitted values of Lo and c are quite satisfactory. 

When duplicating such an exercise 10,000 times, confidential intervals will be defined next. One can anticipate 
large confidence intervals when c = 2. Note also that defining confidence intervals applicable to each single un-
known L0 and c is certainly not appropriate since the accuracy of the final result is defined by the set (L0, c).  

A specific study conducted later will show that the same trend (concerning the first points) can be explained using 
either a low L0 value compensated by a large c value or the opposite. 
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Fig. 12: Example of curve-fitted results obtained using c =4 

 

Again, the individual values of L0 and c are difficult to retrieve, but the final curve-fitted curves do match the 
experimental results. A smaller value of c can compensate a large value of L0 when the random points are below 
the exact curve. The opposite applies when the random cases are above the exact curve. 
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Fig. 13: Example of curve-fitted results obtained using c =30 

 

Again, the estimate of L0 and c is poor, but the final match at low F values is satisfactory. 

As mentioned before, an alternative curve-fitting technique, simply called “New” will be described later for solv-
ing the latter problem. 
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Preliminary conclusions: 
Estimating L0 and c when c is small, of the order of 2 for example, is challenging since miscellaneous set of (L0 
and c) can fit at set of experiments results within the 90 % range of texp at low F values.  

As a demonstration of the latter claim, a specific study has also been conducted next with L10=1 and  = 1. 

In the following, Method 2 is used for defining the exact value of F obtained when scanning on small values of t 
with miscellaneous value of L0 and c. The slope  is fixed to 1 and the constant b is defined for retrieving F = 0.1 
when t = 1. Reference case corresponds to L0=0.2 and c=2. 

   

     

1

0 0

1

0 0

ln ln(1 ) .ln

ln ln(0.9) .ln 1 info : .ln( )

c c c

c c

F t L L b

b L L for b



  

 
      

 
 

       
 

 (18) 
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 

 
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ln ln(1 ) .ln ln ln(0.9)

1

c c c

c c

t L L
F

L L


 

       
   

 (19) 

One sees next that similar trends can be obtained using either very low values of L0 compensated by very large 
values of c (L0=0.05 & c=10 for example), or the opposite (L0=1 & c=1.6 for example). 

 

Fig. 14: Example of miscellaneous set of (Lo & c) values compatible the 90% range 

 

As anticipated, the previously calculated life t using miscellaneous wrong but possible sets of (Lo,c) fits the 90% 
possible range, confirming the difficulty of correctly defining any single value of L0 and c (when c=2 and N=1000) 
while the final curve-fitting can be acceptable. 

The latter statement will be confirmed next by conducting Monte-Carlo simulations, duplicating for example 

10,000 times a curve-fitting exercise for retrieving 10,000 time the ratios 10 0

10_ 0_

, , &
cf cf cf cf

L L c

L L c




to sort in 

ascending order and defining their median values and confidence intervals. 

Also, because of the problems encountered for defining L0 and c, an alternative “New” curve-fitting technique and 
model will be suggested at the end of this paper. 
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Monte-Carlo simulations ; confidence intervals 

Monte-Carlo simulations have been used for conducting NS times (NS=10,000 in the following results) the curve-
fitting of N (N=1000 in the following example) randomly generated values of t_exp  (generated using a given set 
of (, , L0 and c) or (L10, , L0 and c) inputs, for example: 

L10=1 =1, L0 =0.2 and c=2 in the following example. 

The ratio 10 0

10 _ 0 _

, , &
cf

cf cf cf cf

L L c

L L c





 
  
 

 can be sorted in ascending order and plotted versus their median 

rank P, see next Figure obtained using Method 1. 

 

 

Fig. 15: Results obtained using a Monte-Carlo simulation 

 

When fixing the median rank P to 0.05, 0.5 and 0.95, one can define the median 0.5 values of these ratio, as well 
as their 90 % confidence intervals with their lower 0.05 and upper 0.95 bounds. Of interest is also the ratio 
value0.95/value0.05 that one would like small and close to 1, see next table: 

 

Table 3: Example of confidence intervals obtained using method 1, N=1000, NS=10000 and L10=1 =1, L0 =0.2 
and c=2 

The next table summarizes results obtained with c=2, 3 and 10: 

c=2 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.861 1.022 1.250 1.451

beta/beta_cf 0.953 1.008 1.076 1.129

L0/L0_cf 0.255 1.005 2.695 10.581

c/c_cf 0.369 0.945 1.378 3.733

Method1
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Table 4: Confidence intervals obtained using N=1000, NS=10000, L10=1 =1, L0 =0.2 and c=2, 3 or 10 

As anticipated, the lower and upper bound of the single ratio L0/L0_cf and c/ccf can be quite far from 1, mainly 
because of the poor results obtained when ccf = 1.  

One can also notice that all these median ratios are slightly biased (close to 1 however because N is large). These 
median ratios can be used for defining correction factors and unbiased results, as shown by Houpert in [2] and 
Blachère in [11, 12]. Another reference (Houpert, [13]) can also be requested in which five approaches (including 
the MLE) are tested for defining and comparing unbiased ratios.  

When using the ratio 0.95/0.05 as criterion, one sees that method 2 seems more accurate for defining L0 and c. 

 

 Also interesting in the next Figure showing trends between Lo and c: 

c=2 lower_0.05 Median upper 0.95 Ratio 0.95/0.05 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.861 1.022 1.250 1.451 0.847 0.982 1.112 1.312

beta/beta_cf 0.953 1.008 1.076 1.129 0.943 0.993 1.040 1.103

L0/L0_cf 0.255 1.005 2.695 10.581 0.714 1.031 1.838 2.573

c/c_cf 0.369 0.945 1.378 3.733 0.508 0.982 1.462 2.877

c=3 lower_0.05 Median upper 0.95 Ratio 0.95/0.05 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.866 1.014 1.192 1.376 0.852 0.991 1.130 1.326

beta/beta_cf 0.954 1.005 1.062 1.113 0.944 0.996 1.046 1.108

L0/L0_cf 0.428 1.052 1.779 4.157 0.854 1.011 1.471 1.721

c/c_cf 0.344 0.916 1.485 4.310 0.473 1.018 1.558 3.293

c=10 lower_0.05 Median upper 0.95 Ratio 0.95/0.05 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.894 1.034 1.170 1.309 0.857 0.998 1.132 1.321

beta/beta_cf 0.963 1.013 1.058 1.099 0.945 0.998 1.048 1.109

L0/L0_cf 0.547 0.963 1.241 2.270 0.922 1.008 1.184 1.285

c/c_cf 0.445 1.023 3.058 6.865 0.332 1.197 2.197 6.618

Method1 Method2
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Fig. 16: Observed correlation between L0 and c when using 10,000 simulations. 

 

The inaccuracy or difficulty of defining L0 and c is confirmed, as well as the suspected coupling between L0 and 
c.  Large values of L0_cf are indeed observed when ccf is small, for example with method 1 when c=2: 

  0.625 1.6
_ 0_0.2415* 1 1 0.103*o cf cf cf cfL c or c L

      (20) 

For trying to understand why or how large values of L0 can be obtained, one also plotted next the results corre-
sponding to the maximum value of L0_cf (L0_cf =3.902) found using method 1. No especially abnormal values of texp 
at low F values are found, but surprisingly at large F values with texp values much larger than the exact 0.95 bounds 
of life t (leading to a large L10_cf value too). 
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Fig. 17: Example corresponding to a large Lo_cf case 

 

Last, for the sake of completeness, a Monte Carlo simulation has also been conducted using a more realistic value 
of N, N=100, with c=2, 3 and 10 and L0=0.2, confirming even larger confidence intervals, see next Table and 
Figure. 
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Table 5: Confidence intervals obtained using N=100, NS=10000, L10=1 =1, L0 =0.2 and c=2, 3 or 10 

 

Fig. 18: Example of calculated results using N = 100 and c=2 or 10 

Initial run, N=100, NS=10000

c=2 lower_0.05 Median upper 0.95 Ratio 0.95/0.05 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.700 1.031 2.074 2.965 0.604 0.937 1.374 2.275

beta/beta_cf 0.885 1.012 1.282 1.448 0.846 0.975 1.132 1.338

L0/L0_cf 0.067 1.182 5.19E+05 7.75E+06 0.117 1.095 1.79E+05 1.54E+06

c/c_cf 0.055 0.783 2.000 36.660 0.069 0.857 2.000 29.115

c=3 lower_0.05 Median upper 0.95 Ratio 0.95/0.05 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.691 1.042 2.055 2.975 0.604 0.942 1.363 2.255

beta/beta_cf 0.884 1.013 1.274 1.441 0.845 0.974 1.129 1.336

L0/L0_cf 0.070 0.955 7.33E+04 1.04E+06 0.260 1.028 2.18E+04 8.37E+04

c/c_cf 0.065 0.606 3.000 46.247 0.067 0.662 3.000 44.764

c=10 lower_0.05 Median upper 0.95 Ratio 0.95/0.05 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.670 1.042 1.779 2.654 0.610 0.960 1.390 2.279

beta/beta_cf 0.876 1.016 1.229 1.403 0.847 0.981 1.138 1.343

L0/L0_cf 0.138 0.918 3.600 26.10 0.600 1.059 10.471 17.44

c/c_cf 0.145 0.620 6.109 42.269 0.110 0.609 8.396 76.103

Second run, N=100, NS=10000

c=2 lower_0.05 Median upper 0.95 Ratio 0.95/0.05 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.697 1.030 2.047 2.937 0.603 0.937 1.371 2.273

beta/beta_cf 0.882 1.014 1.275 1.446 0.844 0.975 1.133 1.342

L0/L0_cf 0.063 1.159 5.28E+05 8.40E+06 0.115 1.091 1.65E+05 1.44E+06

c/c_cf 0.055 0.785 2.000 36.148 0.069 0.860 2.000 29.124

c=3 lower_0.05 Median upper 0.95 Ratio 0.95/0.05 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.697 1.047 2.014 2.890 0.598 0.945 1.349 2.256

beta/beta_cf 0.883 1.016 1.276 1.445 0.846 0.975 1.130 1.336

L0/L0_cf 0.073 0.962 6.36E+04 8.68E+05 0.229 1.019 2.59E+04 1.13E+05

c/c_cf 0.064 0.584 3.000 46.731 0.067 0.710 3.000 44.958

c=10 lower_0.05 Median upper 0.95 Ratio 0.95/0.05 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.667 1.046 1.784 2.676 0.613 0.955 1.386 2.259

beta/beta_cf 0.875 1.017 1.230 1.406 0.848 0.981 1.137 1.341

L0/L0_cf 0.139 0.925 3.993 28.71 0.607 1.053 9.704 15.98

c/c_cf 0.146 0.609 6.040 41.309 0.112 0.604 8.554 76.413

Third run, N=100, NS=100000

c=2 lower_0.05 Median upper 0.95 Ratio 0.95/0.05
(L10/L10_cf)^beta_cf 0.600 0.939 1.379 2.296

beta/beta_cf 0.846 0.976 1.134 1.341

L0/L0_cf 0.112 1.091 1.79E+05 1.60E+06

c/c_cf 0.067 0.854 2.000 29.915

Method1 Method2

Method1 Method2

Method2



Houpert et al. – Bearing World Journal Vol. 6 (2021) page 41 – page 85 

 

 

65 

For trying to estimate the accuracy of the numbers provided in Table 5, a second and third Monte-Carlo simulation 
has also been conducted using NS = 10000 and even NS= 100000 (for c=2, Method 2 only), showing minor vari-
ations of the median, lower and upper bound values. The latter run can be quite CPU time consuming.  Seeking 
for a higher accuracy of the number provided is also difficult to justify because the numbers provided are function 
of the exponent c which is unknown. As an alternative and non-perfect solution to this problem, it can be suggested 
to conduct Monte-Carlo simulations using the experimental curve-fitted value of c before conducting next the 
10,000 random simulations and defining the confidence interval on L0/L0_cf  and c/cf. 

When using a reduced number of points (N =100) with c = 2, 3 or 10, the curve-fitted exponent ccf is sometimes 
(quite often when c = 2) close to 1 meaning that any values of L0_cf  can be accepted since c=1 corresponds to a 2 
parameter Weibull distribution in which the L0 effect on t cancels out, see Eq. (9) for example. Also, when ccf=1, 
all partial derivatives relative to L0 are nil, meaning that the third equation to solve (f3=0) is always satisfied, see 
Eq. (64) and (65) for example. As a results, the confidence interval on L0 can be very large, illustrating some 
redundancy in Rosemann’s model. Note also that the median ratio c/ccf can be quite biased as a consequence when 
N = 100 or smaller. 

These results are not very encouraging and confirm that Rosemann’s model is difficult to use in practical situations 
when dealing with realistic endurance databases with N often smaller than 100. 

The determination of L0 for example seems quite inaccurate when using realistic N values (smaller than 100 for 
example) at any c values, even when c is large (equivalent to using a 3 Weibull model). 

Defining Rosemann L0 and c seems therefore very challenging when using realistic values of N (N < 100) because 
a few points only corresponding to low F values are available. Defining its confidence interval is even more chal-
lenging because c is unknown. As explained earlier, it can be suggested to conduct Monte-Carlo simulations using 
the experimental curve-fitted value of c before conducting next the 10,000 random simulations and defining the 
confidence interval on L0/L0_cf.  

 

For overcoming these problems, an alternative curve-fitting and model, also using four parameters but simpler to 
use, is suggested in the next chapter. 

Alternative New curve-fitting and New four-parameter model 
New Curve-fitting: 

The alternative curve-fitting is based on two linear models, the first one being simply a two-parameter model 
applied in the large F range, for example F > F1min with F1min = 0.05: 

  

1min

1 1 1

1

1 1 1
1

0.05 :

*

ln( ), ln ln 1

1
ln( ) &

For F F

Y b a X

with Y t X F

b a


 

 

   

 

 (21) 

When sufficient points are available, a second two-parameter linear model can be tested in the low F range, for 
example F < F2max with F2max = 0.01:  

  
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2 2 2

2

2 2 2
2

0.01:

*

ln( ), ln ln 1

1
ln( ) &
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
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 

   
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 (22) 
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Note that a large value of N is requested for having sufficient points to curve-fit below F2max, for example N = 
1000 for having (only) 10 points to curve-fit. 

A slope a2 = 0 corresponds to a three-parameter model; b2 is then equal to ln(L0). 

A case a2 = a1 and b2 = b1 corresponds to a two-parameter model. 

The general case (a2 < a1) corresponds to a deny of a minimum life. 

The latter two linear curves intersect at abscissa Xintersection or Fintersection: 

 2 1
intersection intersection intersection

1 2

1 exp exp( )
b b

X or F X
a a


   


 (23) 

For ensuring a smooth transition with the latter two linear curves (considered as asymptotic values to reach when 
F is either very small or very large), one can suggest: 

2 1
1

1

New n

Transition

Y Y
Y Y

F
F


 

 
  
 

 (24) 

where FTransition and n are theoretically two additional unknowns. Using a trial-and-error approach and Rosemann’s 
values to benchmark against the suggested new curve-fitting, one can finally recommend the following relation-
ship: 

2 1
1 intersection2

1

New Transition

Transition

Y Y
Y Y with F F

F
F


  

 
  
 

 (25) 

Following are a few results obtained with the suggested new proposal when curve-fitting some results obtained 
with Rosemann’s model, N=1000, L10 = 1,  = 1, L0 = 0.2 and miscellaneous c exponents. 

 

 

Fig. 19: New curve-fitted results obtained with N=1000, L10 = 1,  = 1, L0 = 0.2 and c=2, 4, 10 and 175 

 

As expected, there is an obvious link between c, a2 and b2 shown in the next Table. The value L0.1 is used later and 
corresponds to the life when F = 0.001 
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Table 6: Rosemann versus New model correlation between c, a2 and b2 when L10=1, a1=1 and L0 = 0.2 

Using the linear trend observed between Y and X at low F values, two points calculated with Rosemann model at 
X0.01=ln(-ln(1-0.01) and X0.001 = ln(-ln(1-0.001) can for example be used for approximating a2 and b2 as a function 
of c and L0 mainly, but also a1, b1: 
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 (26) 

The match between our new model and Rosemann’s model is not perfect when F2max < F < F1min, but this is not 
our objective, our aim being to demonstrate that Rosemann’s complex non-linear model behaves almost as two 
simple linear models (easy to curve-fit) with an appropriate smooth transition near FTransition. Consequently, a new 
model exhibiting trends similar to Rosemann’s ones will be introduced next. 

When using a random distribution of F for generating an experimental database (based on Rosemann’s model), it 
becomes almost impossible to distinguish the two models (Rosemann and New) with their three curve-fitted pro-
posals (Method 1, Method 2 and New), see next example: 

c b2 a2 L0.1 b1 a1 L10

2 0.7834 0.5306 0.0560 2.0873 0.9447 1

4 ‐0.0229 0.297 0.1256 2.0655 0.9377 1

10 ‐0.5716 0.1636 0.1824 2.0650 0.9375 1

175 ‐0.8241 0.1109 0.2039 2.0650 0.9375 1
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Fig. 20: Comparison between the two models (Rosemann and New) and three curve-fitted results 

 

When conducting several random simulations, some rare abnormal cases can be found where a2 > a1, see for 
example the next Figure for which Method 1 would give L0=0.0046 and c= 22.77, the final Y_cf1 curve-fitted 
curve matching almost a linear two-parameter curve. 

 

Fig. 21: Abnormal case corresponding to a2 > a1 when using the new model. 
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When a2 > a1, one may therefore simply suggest to reject the solution a2 > a1 and conduct a simple linear curve-
fitting in the entire range of F. 

Final new model suggested: 

As an alternative model suggested, one can therefore suggest the following “New” model also using four param-
eters and the standard Y and X variables: 

 
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With the latter four inputs, one can define: 
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and finally: 
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When defining X0.01 and X0.05 as the value of X=-ln[-ln(1-F)] calculated respectively with F =0.01 and 0.05, one 

can define realistic inputs for ensuring 0.01 intersection 0.05X X X  or a realistic coupling between the four param-

eters of the new suggested model.  But the following conditions, if realistic, are not compulsory. 
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 (30) 

The “New” model also allows describing any cases found between the standard two and three standard Weibull 
cases, with the possibility of denying the existence of minimum life L0 via 2 not infinite. 

When sufficient points are available (N=1000 for example), two linear regressions can be suggested in the range 
F > 0.05 (with 950 points) and F < 0.01 (with 10 points), not using therefore the 40 points corresponding to 0.01 
< F < 0.05 
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It should of course also be possible to use all points (especially when N is not very large) for defining the four 
unknowns via a curve-fitting of four non-linear equations as done in this paper with Rosemann’s model. 

Appropriate Monte-Carlo simulations could also be conducted for defining the confidence intervals assigned to 
each of the four unknowns to define. 

This New model should be fully tested and described (including confidence intervals) in a subsequent paper, Ref. 
[14].  

In the latter study, 6000 relative lives (defined as Li / L15.91_G) corresponding to 100 endurance tests. Each test is 
using 6 first in 4 lives Li used for defining the L15.91_G life of each group of 6. This approach allows the user to 
reach very failure rate F (also defined analytically via the inverse beta function) and obtain acceptable confidence 
intervals on L0.1 for example, only slightly function of the ratio a2_cf/a1_cf. 

Conclusions 
Rosemann’s 4 parameter reliability model has been studied in detail for better understanding the effect of the third 
and fourth parameters L0 and c on the life. Rosemann’s model is very flexible and able to describe a 2 parameter 
Weibull model when c = 1, or a 3 parameter Weibull model when c is infinite or very large (c=100 for example), 
the minimum life being then described by L0. When c is larger than 1 (c=2, 3 or 10 for example) the existence of 
a minimum life is denied, the life t at low F value being smaller than L0, a physical point that can be understood 
and accepted conceptually. 

When generating N random values of the cumulative failure density F (0<F<1) and sorting these N values of Fi in 
an ascending order (i=1 to N), one can calculate N values of failed bearing life texp_i, (texp_i being defined as a 
function of Fi and Rosemann’s 4 parameters), simulating hence an endurance database corresponding to a given 
set of N values of texp_i  defined with 4 Rosemann’s input parameters.  

An interesting study of Fi has first been conducted for defining analytically or numerically its cumulative distri-
bution P(F).  When fixing P to 0.05 or 0.5 or 0.95 for example, one can calculate the median estimate of Fi, as 
well as it 90 % confidence interval of Fi, hence also the median life texp_i and its confidence interval. The ‘exact’ 
median value of Fi has been obtained using the inverse beta function) and compared successfully to approximated 
values suggested in the literature.  

The understanding to the 90% range of texp_i is useful for understanding why a large bearing life scatter can be 
obtained when N is small, at low c values especially. 

Appropriate curve-fitting techniques for defining the 4 Rosemann parameters have been defined and tested 
(Method 1 and 2) using a few examples and have been used for anticipating large variations of the curve-fitted 
values L0_cf and ccf when c is small, the final accuracy and match to a simulated database being defined by the 
curve-fitted set (L0_cf,ccf). A large value of L0_cf can be compensated by a small value of ccf and vice-versa. 

The latter results have been confirmed by conducting Monte Carlo simulations for defining the median values and 

confidence intervals of the ratios 10 0

10_ 0_

, , &
cf

cf cf cf cf

L L c

L L c





 
  
 

 

Median values of these ratio are close to 1 (when N is large especially), but the 90% confidence intervals of 

0

0_

&
cf cf

L c

L c
can be large, at small N values especially. 

Although Rosemann’s model is attractive, flexible, and able to consider or deny the existence of a minimum life 
L0, it’s use in practical situation is difficult since the accuracy on the curve-fitted values L0_cf and ccf is poor, espe-
cially when N ≤ 100, while the final accuracy using the set (L0_cf ,ccf) is satisfactory. Using the curve-fitted set (L0_cf 

,ccf) therefore becomes risky when extrapolating the predicted life to small and untested values of F. 

An alternative “New” curve-fitting technique and model (also using four parameters) have finally been suggested, 
with the advantages of having to conduct two simple linear curve-fittings for defining the four unknowns when 
enough points are available. 
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Appendix 1: details about the analytical derivation of P(F) 
For the sake of writing simplicity, it has been decided to attach next the index i (representing the ith value) to the 
cumulative probability Pi (hence not of F as done initially). 

The cumulative density Pi (probability that the ith sorted random value is smaller or equal to F) is: 
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(37) 

While developing these calculations, a novel and useful recurrent algorithm has been found: 
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      11
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 
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   

 (38) 

Leading to the following final analytical result: 
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General analytical relationships have also been developed when decreasing i from N to 1 although  

large failure rate results are usually of little interest. 
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As before, a recurrent numerical algorithm can also be suggested. The only interest of trying to develop an analyt-
ical recurrent algorithm is that when calculating Pi=950 for example, one does not need to calculate the previous 
949 values of P, but only 49 values in a decreasing order, starting with i =1000 in our example. 

1

0

1

0

0

.

!
.(1 )

( )!.( 1)!

:

1 1
. . .

i i i

F

i N i
i i

F

FN N N
N N

P A I with

N
A and I x x

N i i

Starting with i N

A N I x dx x F
N N

 





  
 



   





 (49) 

Recurrent algorithm: 

 

1

1

1

0

1

1

1

0

0 0

!
.

( )!.( 1)!

.(1 ) . .

(1 ) .(1 ) .

1
. .

1 ( )
. . . .(1 ) . .(1 ) .

1 ( )
. .(1 ) .

i

i i

F

i N i
i

N i N i

i i

F F

F i N i i N i
i

I

i N i
i

N i
A A

N i i N i

I x x dx u dv

u x du N i x dx

dv x dx v x
i

N i
I u v v du F F x x dx

i i

N i
I F F

i i





 

  



  



 
  

  

     

 


     


  

 

 


1iI   (50) 

So, one can finally use: 
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Note that one can also write: 
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It can also be demonstrated that: 
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 (53)  
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Appendix 2:  
Explanations about the Maximum Likelihood (ML) approach using Rosemann’s model 
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The ML approach consists therefore to solve: 
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via a set of 4 non-linear equations: 
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The fourth derivation requires to use: 
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Appendix 3: Method 1 
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Minimizing S2 can be done by solving 4 non-linear equations: 
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The factor 2 can of course be eliminated. 

One can calculate numerically (using finite differences) or analytically (recommended approach because more 
accurate) the derivative of Ycf versus any unknow: 
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When selecting the analytical approach, one therefore needs to define analytically the four following derivatives: 
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Solving any of the previously defined equations fi(a,b,L0,c) =0 (for i=1 to 4) is the next step. 

This can be done by using a first order Taylor approximation and writing: 
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(66) 

Meaning that one needs to solve in an iterative manner a linear set of 4 equations with 4 unknowns: 

a, b, L0 and c 

One now needs to define the partial derivative matrix: 
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1 1 1 1

0

2 2 2 2

0

3 3 3 3

0

4 4 4 4

0

df df df df

da db dL dc

df df df df

da db dL dc

df df df df

da db dL dc

df df df df

da db dL dc

 
 
 
 
 
 
 
 
 
 
 
 

 (67) 

These partial derivatives could perhaps be calculated again analytically but for the sake of simplicity, a numerical 
approach has been preferred, the four terms of any given line “i” of the partial derivative matrix being defined 
using finite differences: 
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The increments da, db and dc have fixed to 0.01 while dL0 was fixed to 0.001 
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Appendix 4: Method 2 
The approach is simpler (relative to Method 1) to develop and program: 

 

  

 

1

exp_ 0 0

_

0

.ln

ln ln 1

4 :

.ln

c c c
i i i

i median i

S a t L L b X

with X F

with unknowns

a b L and c  

 
     

 

  

  

     (69) 

 

 
 

1

exp_ 0 0

1
1 1

exp_ 0 01
0

exp_ 0 0

ln

1

. . 1

c ci c
i

i

c c ci c
i

c c c
i

dS
t L L

da

dS

db

dS a
t L L

dL
t L L

 

 
   

 



 
   

  

  (70) 

 

 
1

exp_ 0

1

exp_ 0 0

.

c c c
i

i

c c c
i

d t L
dS a

dc dc
t L L

 
 

 
 

 (71) 

The latter derivative can be obtained using an online application: 
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The set of 4 non-linear equations to solve is describe by the following, (i = 1 to 4): 
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The increments da, db and dc have fixed to 0.01 while dL0 was fixed to 0.001 
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Abstract 
A new reliability model is suggested in which the failure rate F is calculated as a function of the life L and four 
parameters (a1 and L10) and (a2 and L0.1) corresponding to two asymptotic linear models used at large and low F 
values respectively (with a2 ≤a1), with a smooth non-linear transition between these two straight lines. L0.1 is the 
life corresponding to F=0.001 while L10 is the standard life corresponding to F = 0.1 

An appropriate non-linear curve-fitting technique is suggested for retrieving the four parameters which are satis-
factorily compared to the results obtained using two simple linear curve-fittings in the range F > 0.05 and F < 0.01. 

The median value of F, as well as its 90 % variation range can be calculated exactly using the inverse beta function 
and the numbers N and NR corresponding to a first-in-N testing strategy and NR test rigs (or failed bearings); N=4 
& NR = 6 for example. A standard two-parameter Weibull analysis of the 6 estimates of the L15.91 lives can be done 
for estimating the L15.91_G life of the group (of 6 failed bearings) as well as 6 values of the relative life L/ L15.91_G 
used later. Only failed or (failed + suspended) items can be considered in this exercise. It is demonstrated analyti-
cally that the same Weibull slope and life are obtained using both approaches, provided the L50 life of the failed-
only items is used as best estimate of L15.91. 

Using the relative lives, a large database of 600 relative lives can be obtained by gathering 100 endurance tests 
(using N=4 and NR=6) or numerically simulated life (using random values of F sorted in ascending orders).  

These 600 relative lives can be analyzed using the previously described non-linear or linear curve-fitting tech-
niques, so that curve-fitted values of a2_cf and L0.1_cf/L10_cf can be obtained and compared to the exact values of a2 
and L0.1/L10. Using L10 as a reference, the value of L15.91_G can also be estimated and used for estimating L0.1_cf to 
compare to the exact value L0.1 using again a non-linear and linear curve-fitting approach.  

1000 Monte Carlo simulations of this exercise can be done for defining the median value and 90% confidence 
intervals of the ratio a2/ a2_cf and L0.1/L0.1_cf .  Almost similar results are obtained using the non-linear or simple 
linear curve-fittings, so that two simple linear curve-fittings are finally suggested in the appropriate range of F (F 
> 0.05 and F < 0.01). These ratios are slightly biased but close to 1, confirming that relative lives can be used for 
retrieving the four parameters of our model. The biased ratios can be corrected by introducing a correction factor, 
curve fitted as a function of the ratio a2_cf/a1_cf and leading to an excellent estimate of a2 and L0.1 with reasonable 
confidence intervals. 

Keywords: Reliability, Weibull models, analysis of large endurance database 

 

Objectives 
A detailed analysis of Rosemann’s four parameter model [1] has been conducted in [2] by Houpert and Clarke. 

In the latter, the cumulative failure probability F of the ith failure is calculated exactly with all N tested bearings 
failing.  

Rosemann’s model is quite general and powerful, allowing the user to refute the existence of the third Weibull 
parameter L0. Rosemann’s model is however difficult to curve-fit and can exhibit some redundancies when the 
exponent c is small and close to 1. 

It has however been observed in [2] that Rosemann’s model behaves almost linearly at very low and very large 
values of F, so that a new model, easier to curve-fit and duplicating quite well Rosemann’s trends, has been sug-
gested in [2]. 

Defining the third and fourth parameters of these models (Rosemann or the new model suggested herein) requires 
however to use a very large number N of failed bearings in order to have access at low F results.  

The latter problem can somewhat be avoided by using first in N failures strategy and relative lives. 
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It is indeed common to adopt a first-in-N testing strategy using NR test rigs, and the first objective of this paper is 
to show how the cumulative failure probability F of the ith failure (out of NR) can be calculated exactly for defining 
its median value for example, but also lower and upper bound of its 90 % variation range. The median value can 
then be used for matching experimental life results to curve-fitted ones using any reliability life model, Rose-
mann’s model for example or the new model suggested in [2].  

The new model will be studied herein using two possible curve-fitting techniques for defining the four parameters 
of our model: a non-linear curve-fitting using a Newton-Raphson approach or a simplified approach using linear 
curve-fittings. 

When using the first in 4 testing strategy (N=4) and 6 test rigs (NR=6), 6 estimates of the L15.91 life can be used for 
defining (using a linear curve-fitting usually) the L15.91_G of the group, so that 6 relative lives can be defined by 
dividing the 6 lives by L15.91_G. 100 endurance tests then lead to 600 points to analyze, the first 23 ones correspond-
ing to very low failure rates.  

Monte-Carlo simulations can be used for simulating the creation of a large database using relative lives, and the 
third objective is to demonstrate that the relative lives also follow the initial four parameters reliability model.  

Finally, a second loop of Monte-Carlo simulations can be conducted for defining the confidence intervals assigned 
to the four unknown parameters. 

 

Standard testing strategy using N failed bearings; two approaches for calculating Fi_median 
A standard testing strategy consists of using N failed bearings and analyze Yi=ln(ti) versus Xi = ln(-ln(1-Fi_median)) 
using a 2 or 3 or 4 parameter reliability model where Fi_median is the cumulative median failure probability for the 
ith bearing to fail before time ti (sorted in ascending order). 

The calculation of Fi_median has been described [2] using two approaches explained here below. 

When generating N values of F (0< F <1) and sorting them in an ascending order, one can calculate the density f 
and cumulative distribution Pi of each ith number F. The density distribution f(F) corresponding to order ith value 
of F is: 

     1!
( ) . . 1

!. 1 !
N iiN

f F F F
N i i

 
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The cumulative density Pi (probability that the ith sorted random value is smaller or equal to F) is: 
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          (2) 

Two means of calculating F as a function of P have been developed in [2] when failing all N bearings: an analytical 
approach, somewhat tedious, and another one using the incomplete beta and inverse beta function, see next pages. 

 

Analytical approach: 

The first approach is using an analytical integration of P as a function of F, but one then needs to solve numerically 
P(F)=PTargetted for defining F as a function of PTargetted. 
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Use of the incomplete beta function and inverse beta function: 
It has also been shown in [2] that P and F can be directly defined using the incomplete beta and inverse beta 
function. 
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Median values of F can therefore be calculated exactly using one of the two previously described methods, but 
can also be approximated using Johnson’s relationship or the one called other in our previous paper: 
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  (6)  

The lower and upper bounds of F (corresponding to P = 0.05 and 0.95 respectively) can also be calculated (using 
Eqs. (3), (4) or (5)) for defining the 90% confidence interval of F. 

 

First-in-N testing strategy using NR test rigs (N=4, NR=6 for example): 
To reduce the testing time of an endurance test, a first-in-N (N= 4 for example) testing strategy is often used as 
shown by Houpert in [3]. 

This testing strategy consists of using NR test rigs (NR = 6 for example) having each N bearings (N=4 for example) 
under test, and to suspend the test on a given test rig when the first bearing (out of N) fails.  NR lives representative 
of the L15.91 bearing life are therefore available and are usually analyzed using a two-parameter Weibull model and 
a median value of F (called F1 in the next table showing also the 90% variation range of F) defined using NR 
values and i = 1 to NR. 

 1 , , 1F InvBeta P i NR i    (7)  

 
Table 1: Exact median, 5% lower and 95% upper bounds of F1 (using NR = 6) 

The peculiar points, demonstrated next in this paper, is that the latter approach correctly defines the Weibull slope. 
Furthermore, the interpolated L50 value of the latter distribution corresponds to the true L15.91 value. 

 

Analysis of P and F using the first-in-N approach with NR test rigs 

One will now call in this chapter g(x) the density and G(x) the cumulative probability of the failure rate x corre-
sponding to the first failure out of N. 
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It is possible to derive analytically the density f and the cumulative probability P of the NR first-in-four failure 
rates (sorted in ascending order) 
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The cumulative probability P is obtained by integrating analytically the latter relationship. 
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The latter relation can be compared to Eq. (5) corresponding to N failures. 

As conducted in the previous chapter or in [2], P can be calculated analytically (for a given set of N and NR, N=4 
and NR=6 for example) or numerically for any set of N and NR. Also, some approximated relationships are sug-
gested in the appendix of [3] for defining the median value of F when considering suspended items. 

i F1_0.05 median F1 F1_0.95 (using NR=6)
1 0.008512445 0.109101282 0.393037769
2 0.062849892 0.264449983 0.581803409
3 0.153161118 0.421407191 0.728661627
4 0.271338373 0.578592809 0.846838882
5 0.418196591 0.735550017 0.937150108
6 0.606962231 0.890898718 0.991487555
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Analytical calculations of P 
Analytical calculations are conducted next by fixing N = 4 and NR = 6 
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Following are the Figures calculated using the previously analytical relationships: 

 
Fig. 1: Distribution of the density function f versus x (x=F) 
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Fig. 2: Distribution of the cumulative probability P versus x (x=F) 

 

Of interest to users is the reverse relationship x=P(x) 

 
Fig. 3: Distribution of the cumulative failure probability F (F=x) versus P 

 

Let’s call F2 the value of F defined using this second approach (which considers suspended items).  

The value of F2 corresponding to a given probability P can only be defined analytically for the first failure: 

 
1

242 1 1F P     (13) 

The other solution F2 (when i is not equal to 1) requires using a solver for defining F2 as a function of P. 

Following is a table showing the results obtained using P = 0.05 (lower bound of the 90 % interval), 0.5 (median 
rank) and 0.95 (upper bound of the 90 % confidence interval). 
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Table 2: Exact median, 5% lower and 95% upper bounds of F2 (using N=4 and NR = 6) 

The last five columns correspond to an approximated approach described in the appendix of Ref. [3] where Failed 
and Suspended items are considered (among N*NR bearings, hence 24 bearings) for calculating a failure number 
increment and final failure order number i, not any longer equal to an integer. The latter value of i can then be used 
in Eq. (6) with 24 items for approximating the median value of F2. The relative error using the approximated 
solution is of the order of 0.02, but the latter approach can be used with any number of suspended items (and not 
systematically 1 failed and 3 suspended items). 

 

Exact numerical calculations of P and F 
Eq. (11) can be further studied by introducing a change of variable: 
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The final ‘exact’ numerical solution reads therefore: 
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where the symbols F2 reminds the reader that the second approach (accounting for NR Failed and NR*(N-1) sus-
pended items) is used. The merits of the latter relationships are plural.  No solver is required for defining F2 as a 
function of P. Also, these relationships apply to any set (N, NR) while the previously defined analytical relation-
ships giving P as a function of F2 had to be developed analytically for a given set (N=4, NR=6).  

One can now use a two-parameter Weibull model for retrieving the slope and any life (L10 or L15.91 for example) 
using the latter median values of F2, with no need of interpolating L50 for having the best estimated of L15.91 (as 
done when using F1). 

i F2_0.05 median F2  F2_0.95 i with increments Median F2_Johnson Median F2 others rel error Johnson rel error other
1 2.13493836970E-03 2.84680588464E-02 1.17346156155E-01 1.00000000 2.8468058846E-02 2.8688524590E-02 0.0000E+00 7.7443E-03
2 1.60969883221E-02 7.39103033498E-02 1.95835083696E-01 2.14285714 7.5328375980E-02 7.5526932084E-02 1.9186E-02 2.1873E-02
3 4.07093808822E-02 1.27845837259E-01 2.78264937927E-01 3.48739496 1.3045816084E-01 1.3063094090E-01 2.0433E-02 2.1785E-02
4 7.60861555648E-02 1.94296063572E-01 3.74413840309E-01 5.14221073 1.9831020375E-01 1.9845125944E-01 2.0660E-02 2.1386E-02
5 1.26638455257E-01 2.82889822892E-01 4.99301680895E-01 7.34863176 2.8877959429E-01 2.8887835084E-01 2.0820E-02 2.1169E-02
6 2.08212627164E-01 4.25278474630E-01 6.96251896687E-01 10.87890541 4.3353061916E-01 4.3356169706E-01 1.9404E-02 1.9477E-02

Approximations using Failed & Suspended increment orders and approximated F relationships
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Demonstration that the two approaches (using either F1 or F2) are similar 
When defining Y = ln(t), X1 = ln(-ln(1-F1)) and X2 = ln(-ln(1-F2)), one can now demonstrate that the two ap-
proaches are similar.  Using the previous relationships, one can write: 

 

 

 

   

     

1

1

1 (1 2) , , 1 1

2 1 1 1

1 2 1 1

1
ln 1 2 .ln 1 1

1
ln ln 1 2 ln ln ln 1 1

N

N

N

F InvBeta P i NR i F

F F

F F

F F
N

F F
N

     

  

  

  

       
 

 (16) 

or: 

     

1
2 ln 1 1

1
2 ln ln 1 2 1 ln ln 1 1 ln

X X X Translation
N

with X F X F and Translation
N

     
 

         
 

 (17) 

A constant translation between X1 and X2 is therefore observed (at any P value), explaining why the same slope 
is retrieved using the first or second approach, see next table and Figure. 

 
Table 3: median F1 and F2 values confirming a constant translation 

The following Figure also confirms the same slope but can be used for observing graphically that L50 using F1 = 
L15.91 using F2. 

i median F1 median F2 X1 X2 Translation=X2-X1
1 0.109101282 2.84680588464E-02 -2.15827239 -3.544566751 -1.386294361
2 0.264449983 7.39103033498E-02 -1.180462231 -2.566756592 -1.386294361
3 0.421407191 1.27845837259E-01 -0.603020751 -1.989315112 -1.386294361
4 0.578592809 1.94296063572E-01 -0.146002302 -1.532296663 -1.386294361
5 0.735550017 2.82889822892E-01 0.285256492 -1.10103787 -1.386294361
6 0.890898718 4.25278474630E-01 0.795468469 -0.590825892 -1.386294361
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Fig. 4: Calculated results when plotting Y versus X1 or X2 using L15.91=1 and  =1 

 

The latter statement can also be demonstrated analytically. 

Using F2, hence the exact relationship, one can write: 

 
 

1
1

15.91
2 15.911

4 1
ln( ) ln . ln(1 2) ln . . 2

ln(2)ln(1 0.1591)

L
Y t F L X




 

  
                         

 (18) 

When using F1, one already knows that the slope is the same, so that when using any of the 6 Y values, one can 
write: 

 

1

1 1 2 15.91

1 1

1 15.91 15.91

1

1 15.91

1 4 1
. 1 ln . . 2

ln(2)

4 1 4 1
ln . . 2 1 ln . .

ln(2) ln(2)

4 1
ln . .

ln(2)

Y b X Y L X

b L X X L Translation

Y L Translation



 



 

 



 
         
   

   
                
         
 
     
   

1

15.91

1 11

15.91 15.91

1 4 1 1
. 1 ln . .ln(4) .ln( ln(1 1))

ln(2)

4 ln(1 1) 4 ln(1 1)
ln . ln ln . ln( )

ln(2) 4 ln(2) 4

X L F

F F
L L



 

  

 
         
   

   
                            

(19) 

15.91 15.911 0.5, 1 ln( ) &When F Y L t L     (20) 

The next Figure shows an example of calculated Y2 and t values plotted versus X2 with the corresponding 90% 
variation range. 
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Fig. 5: Calculated median, lower & upper bounds of Y2 and t using L15.91=1 and  =1  

 

X2 can now be used with any reliability model using for example a three or four parameter reliability model for 
example. 

In the following, one will use the true F values, hence the previously defined F2 value, with a first-in-N testing 
strategy, N being fixed to 4. 

 

New four parameters reliability model and curve-fitting of the four parameters: 
The new model described in [2] contains four unknowns to define: a1, b1, a2 and b2 representative of a two param-
eter Weibull model in the large and low range of F respectively: 

1 1 1 2 2 2
1 2

1 1
ln( ) ln( )a b a b 

 
       (21) 

2 1
1 2

intersection

ln( )

1

Y Y
Y t Y

F
F


  

 
  
 

 (22) 

with: 

  

 

1 1 1

2 2 2

2 1
intersection intersection intersection

1 2

* ln ln 1

*

1 exp exp( )

Y b a X with X F

Y b a X

b b
F X X

a a

    

 


   


  (23) 

Note that the symbols Y1 and Y2 used in this chapter differ from the ones used in the previous chapter. In the 
previous chapter, Y1 and Y2 were associated to the use of X1 and X2 (X2=X1+Translation), while they now rep-
resent the two asymptotic lines calculated with the true value of X (corresponding to X2 defined with F2, hence 
including the translation or suspended items). 

Values of a2 and b2 have been correlated in [2] to Rosemann’s exponent c (varying from 2 to 175 as show in the 
next table) while maintaining the other three Rosemann’s parameters constant: L0 = 0.2, L10=1 and =1. 

The value L0.1 used next corresponds to the life when F = 0.001 while L10 is the life corresponding to F = 0.1 



Houpert et al. – Bearing World Journal Vol. 6 (2021) page 87 – page 117 
 

 
97 

 
Table 4: From [2]: correlation between c, a2 and b2 when L10=1, a1=1 and L0 = 0.2 

In the following, one will test our new model using a1, b1, a2 and b2, but may also use as input: a1=1, L10=1, a2 and 
L0.1 as defined in the previous table and refer sometimes (for simplicity) to c=2, 4, 10 and 175 (easier to refer to 
rather than referring to a2 and b2). 

L10 and L0.1 can indeed be used as input for defining b1 and b2 via the following linear approximation: 

𝑏ଵ ൎ 𝑙𝑛 𝐿ଵ଴ െ 𝑎ଵ. 𝑙𝑛ሺെ 𝑙𝑛ሺ0.9ሻሻ 
𝑏ଶ ൎ 𝑙𝑛 𝐿଴.ଵ െ 𝑎ଶ. 𝑙𝑛ሺെ 𝑙𝑛ሺ0.999ሻሻ (24) 

hence b1 = 2.2504 and b2 = 0.7826 when a1=1, L10=1, a2=0.5306 and L0.1= 0.056 for example. 

L10 and L0.1 can be also used as input for defining, via some iterations, the exact values of b1 and b2 using our full 
four parameter non-linear model: b1 = 2.3096 and b2 = 0.7838 when a1=1, L10=1, a2=0.5306 and L0.1= 0.056 for 
example. 

Note that any other life can be used as reference for defining b1, for example L15.91 = 1 with a1=1, leading to b1 = 
1.7528 (using F=0.1591 and the linear model). 

Following is one example of results obtained with our new model and 1000 points generated using either Fmedian 
or random values of F sorted in ascending order. The corresponding Y values (Y=ln(t)) are then plotted versus the 
median values of Xmedian=ln(-ln(Fmedian). The 90% variation range of Y is also shown. 

 
Fig. 6: Example of results obtained using the new 4 parameter non-linear model, N=1000  

 

The next step consists of curve-fitting this database for retrieving the four parameters of our model: a1, b1, a2 and 
b2 or a1, L10, a2 and L0.1.  

 

 

c b2 a2 L0.1 b1 a1 L10

2 0.7834 0.5306 0.0560 2.0873 0.9447 1

4 ‐0.0229 0.297 0.1256 2.0655 0.9377 1

10 ‐0.5716 0.1636 0.1824 2.0650 0.9375 1

175 ‐0.8241 0.1109 0.2039 2.0650 0.9375 1
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Non-linear curve-fitting 
The full model is non-linear and requires a challenging non-linear curve-fitting for defining the four unknowns a1, 
b1, a2 and b2: 

   

 

2 1 2 1
1 1 2

2 1

1 2

.
.

1 exp exp( )
1

1 exp exp( )

b b a a X
Y b a X

X

b b
a a

  
  

 
   
  
      

   (25) 

An iterative non-linear curve-fitting approach is suggested in Appendix 1 with the previous example curve-fitted 
in the following Figure 7. 

The approach called Method 1 in appendix 1 minimizes the sum of the square of the vertical differences,  

 2

exp_ _i cf iY Y  

Other approaches are available, like the one called Method 2 in Ref. [2], consisting of minimizing the sum of the 
square of the horizontal differences. This approach has been fully tested in Ref. [2]. 
Mike Kotzalas used in Ref. [4] the Hazard method to determine the median rank and then used method 2. 
Another well-known approach is the Maximum Likelihood Estimate (MLE) approach, consisting of maximizing 
the product of all density distributions fi (associated to each of the failed Li) times the product of all Si survival 
probabilities (associated to suspended lives Li). This approach is very attractive since there is therefore no need to 
define median ranks while suspended items can be easily considered.  

While using a standard 2-parameter Weibull model, five approaches (including the MLE one) have been tested in 
ref. (5], unfortunately only available upon request. It has been demonstrated that the results obtained using the 
MLE can be quite biased when using low N values, but also that all five approaches lead to similar confidence 
intervals once correcting for the biased median ratio.  

When using a standard 2-parameter Weibull model, Methods 1 or 2 require using simple linear curve-fitting while 
a non-linear curve-fitting is required when using MLE, explaining perhaps why users often favour the use of 
Method 1 or 2. 

When using the here-in described new 4-parameter Weibull model, non-linear curve-fitting cannot be avoided, 
even when using method 1.  

Since all approaches are probably equivalent once correcting for the biased ratio, only method 1 is fully described 
in appendix 1 and tested in this paper.  
Last, bearing users interested in advanced information on reliability may read Ref. [6] to [9]. 

 

Simplified linear curve-fittings 
The simplest curve-fitting requires us to conduct two linear curve-fittings for defining a1, b1, a2 and b2 by fixing 
the lower bound F1T of range 1 (F> F1T) and upper bound F2T of range 2 (F < F2T), for example F1T=0.05 and F2T 
= 0.01, and rely on the smooth transition between Y1 and Y2 using Fintersection and n=2. 

1 1 1 1 1 1

2 2 2 2 2 2

:

* 0.05 ln( ln(1 ))

* 0.01 ln( ln(1 ))
T T T

T T T

Linear curve fitting

Y b a X when F F or X X F

Y b a X when F F or X X F



       
       

 (26) 

The following Figure 7 shows the results obtained with the previous example curve-fitted using the non-linear and 
linear curve-fitting. Minor differences are observed in this example, the sum Si2 being only slightly reduced when 
using the non-linear curve-fitting. 
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Fig. 7: Example of curve-fitted results obtained with N=1000.  

 

The objectives being to describe life reliability models at low F values, one could therefore simply suggest (and 
test later for confirming our suggestion) a linear curve-fitting between Y and X at low F values, hence use 
Y2=a2.X+b2 when F < F2T = 0.01. 

Note that even when using N=1000 (hence many bearing failures), only 10 points corresponding to F < 0.01 are 
available, the lowest value of Fmedian being then equal to 6.9291*10-4.  

The main problem when using a three or four parameter reliability model remains therefore to obtain a large 
database for having results to curve-fit at low F values. 

One will demonstrate next that all parameters (a2, b2 especially, but also a1, b1) can be retrieved using relative lives 
defined for example using 100 times 6 failures corresponding to first-in-4 failures. 

 

Generation of a large database 
For creating a large endurance test database, one idea used by M. Kotzalas [4] (using a three-parameter Weibull 
model) consists of analyzing relative lives Lrel_i, each bearing life Li being divided by the estimated L15.91_G  of the 
tested group when using the first-in-4 (N=4) bearing failure and 6 (NR = 6) failures for example. 

_
15.91_

i
rel i

G

L
L

L
   (27) 

It can be shown that when using N=4 and NR=6, the value of L15.91_G can be estimated using a linear regression, 
the error on L15.91_G being of the order of 2% when c=2, see next Figure, and surprisingly even less when c= 175. 
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Fig. 8: Examples of linear regression conducted on 6 first-in-4 ‘exact’ failures.  

 

Using now several endurance databases (for example 100 of them, each leading to 6 relative lives), 600 relative 
lives are available for being sorted in ascending order. 

The lowest median F value (of the first point) is then quite small: 2.8877*10-4 (with 23 points corresponding to F 
< 0.01) versus 6.9291*10-4 when using 1000 first-in-1 failures (and only 10 points corresponding to F < 0.01). 

Appendix 2 shows that the relative life corresponding to the two asymptotic linear curves can be defined using the 
same slopes a1 and a2 and two relative value b1_rel and b2_rel: 

 
  

1 0.1591 1 1_

1_ 1 0.1591

1 . .

ln ln 1 & .

rel rel

rel

Y a X X a X b

with X F b a X

   

    
  (28) 

       
2 2_

2_ 2 1 0.1591 2 1 0.1591 0.1 10

2 .

. ln . ln

rel rel

rel ref ref

Y a X b

b b a X X L b a X X L

 

       
 (29) 

The full non-linear model reads of course: 

   

 

2 _ 1_ 2 1

1_ 12 2

int sec

2 _ 1_

1 2

.2 1
1 .

1
1 exp exp( )

1

1 exp exp( )

rel relrel rel
rel rel rel

er tion

rel rel

b b a a XY Y
Y Y b a X

F
F X

b b

a a

  
    

   
        

  
      

   (30) 

 

Curve-fitting the relative lives  
Using one example, the full non-linear (as explained in Appendix 1) and the two simple linear curve-fittings are 
conducted next for defining the curve-fitted values of our four unknowns, now using the relative lives. 

_ 1_ 1_ _ 2 _ 2 _ _( , , , , , 2)rel cf cf rel cf cf rel cf relY f X a b a b n to compare to Y   (31) 

_ 1_ 1_ _ 1 1_ 1_ 1 0.15911 . 1 . .rel cf cf rel cf rel rel relY a X b to compare to Y a X b with b a X         (32) 

   
_ 2_ 2_ _ 2 2_

2_ 2 1 0.1591 0.1 10

2 . 2 .

. ln

rel cf cf rel cf rel rel

rel

Y a X b to compare to Y a X b

with b b a X X L

   

   
    (33) 
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The four non-linear curve-fitted values (a1_cf, b1_cf, a2_cf and b2_cf) used in Eq. (31) differ of course slightly from 
the linear curve-fitted ones used in Eq. (32) and (33) as shown for the example in Fig. 9, but the same symbols 
(a1_cf, b1_cf, a2_cf and b2_cf) will be kept for simplicity. 

In the following, one will follow the ratios a1/a1_cf and a2/a2_cf, as well as some other ratios of interests to users. 

 

Calculation of the derived exact and curve-fitted ratio: L0.1/L10 
Eq.(31) can be used three times (with X0.001 , X0.1 and X0.1591) for defining the ratios: 

   0.1_ 0.1_
0.1_ _ 10_ _ 0.1_ _ 15.91_ _

10_ 15.91_

:

exp & expcf cf
rel cf rel cf rel cf rel cf

cf cf

Non linear curve fitted ratio

L L
Y Y Y Y

L L

 

   
  (34) 

while the linear curve-fittings lead to: 

   0.1_ 0.1_
0.1_ _ 10_ _ 0.1_ _ 15.91_ _

10_ 15.91_

:

exp 2 1 & exp 2 1cf cf
rel cf rel cf rel cf rel cf

cf cf

Linear curve fitting ratio

L L
Y Y Y Y

L L



   
  (35) 

When using the linear models, simple analytical relationships can be further developed for defining the linear 
curve-fitted ratio to compare to the exact ratio:  

 

 

0.1_0.1
0.1_ 10_ 2_ 0.001 2_ _ 1_ 0.1 1_ _

10 10_

0.1_0.1
0.1_ 15.91_ 2_ 0.001 2_ _

15.91 15.91_

:

exp exp . .

exp exp .

cf
rel rel cf rel cf cf rel cf

cf

cf
rel rel cf rel cf

cf

Exact ratio Linear curve fitted ratio

LL
Y Y a X b a X b

L L

LL
Y Y a X b

L L



       

    1_ 0.1591 1_ _.cf rel cfa X b   

  (36) 

These ratios are of major interest to users. One will compare later (using Monte Carlo simulations) the exact ratios 
to the ones obtained using non-linear and linear curve-fittings. It is hoped that the median ratios a2/a2_cf and  

0.1

10

0.1_

10 _

cf

cf

L

L
L

L

will be close to 1 and that the 90 % confidence interval of the latter ratio will not be too large for 

demonstrating that relative lives can indeed be used for access to a2 and L0.1/L10. 
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Fig. 9: Example of results obtained using one large database of 600 relative lives. 

 

In this example, the ratio L0.1_cf/L10_cf is of the order of 0.074 instead of 0.056 and a2_cf are equal to about 0.44 or 
0.41 instead of 0.5306 

Note that when using the exact 4 parameters (a1_cf, b1_rel_cf, a2_cf and b2_rel_cf), L0.1/L10 is equal to 0.0597 instead of 
0.056 while the relative lives have been created using L0.1=0.056 & L10 =1. The differences are attributed to the 
use of relative lives. 

 

Estimation of L10 and L0.1: 
Although relative lives are used in our large database, one can still try to retrieve or estimate the single values of 
L10_cf and L0.1_cf. 

For estimating L10_cf and L0.1_cf, one will use the curve-fitted results representative of ln(L10_cf /L15.41_G) and ln(L0.1_cf 
/L15.41_G), but needs however to estimate the value of L15.91_G used as the denominator of the latter ratio. This value 
has been estimated 100 times when using 600 relative lives in our example, but a single value must be estimated 
and kept now for the next steps. 

For estimating L15.91_G, one must assume knowing the origin of our experimental database (describing L/L15.91_G), 
hence the median value for example of L15.91_G.  

In our numerical simulation, the large database has been created using L10 as initial reference and a slope a1 (that 
can be assumed correctly estimated when using a two-parameter Weibull model), but also a2 and b2. One can 
assume that the median value of L15.91_G is equal to an extrapolated ‘exact’ or curve-fitted value L15.91_G_cf  defined 
with the exact L10 value (taken as reference) and the slope a1 or a1_cf  respectively. Furthermore, these ‘exact’ values 
of L15.91_G and curve-fitted value L15.91_G_cf   will be estimated next using our simplified linear relationship giving 
Y1 (with either the exact a1 or a1_cf slope) since the 100 values of L15.91_G have been defined using a linear curve-
fitting, hence Y1. 

The quotes around the word ‘exact’ are used since a simplified linear relationship (Y1) has been used for defining 
L15.91_G while the real behavior is non-linear, but unknown to the user. In other words, the true exact values of 
L15.91, but also L10 and L0.1 are never known since the four parameters used in our model (a2 and b2 especially) are 
not known. 
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Note also that the distinction between a1 and a1_cf would not be needed if L15.91 (instead of L10) would have been 
taken as initial reference, but it is common practice to use L10 as reference. The ‘exact’ and curve-fitted values of 
L15.91_G can finally be estimated using: 

 
 

 
 

1 1_

15.91_ 10 15.91 15.91_ _ 10

ln 1 0.1591 ln 1 0.1591
. & .

ln 1 0.1 ln 1 0.1

cfa a

G G cfL L L L L
    

            
 (37) 

Note also that a1_cf can be defined as corresponding to the non-linear or linear curve-fitting. 

When using the ‘exact’ value of L15.91_G with the non-linear Ycf or linear relationships Y1cf and Y2cf, one obtains: 

 

 
 

1

15.91_ 10

0.1_ 0.1_ 15.91_

10_ 10 _ 15.91_
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ln 1 0.1591
.
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:

exp .

exp .

exp .
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exp 2 . exp .ln ln

a
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L L
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L Y L
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L Y L a

 
    



   
   
   

       
  
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2_ _ 15.91_

10_ 10_ 15.91_ 1_ 1_ _ 15.91_

15.91_ 15.91_ 15.91_ 1_ 1_ _ 15.91_

1 0.001 .

exp 1 . exp .ln ln 1 0.1 .

exp 1 . exp .ln ln 1 0.1591 .

rel cf G

cf cf G cf rel cf G

cf cf G cf rel cf G

b L

L Y L a b L

L Y L a b L

   
         

         

(38) 

 

Similar relationships are of course suggested when using L15.91_G_cf using a1_cf defined with either the non-linear or 
linear curve-fitting. 

The next table shows the results obtained in our last example corresponding to Fig. 9: 

 
Table 5: Example of estimates of L0.1_cf and L10_cf using the relative lives, L10=1, L0.1=0.056  

 

The true and exact value of L15.91 is here equal to 1.68012 but is usually not known by the user conducting linear 
regression on 6 first-in-four failures. Having defined the four unknows, one can follow some ratios of interest to 
users, see appendix 2. 

Besides following the ratio a1/a1_cf (equal to1_cf/1) and a2/a2_cf (equal to2_cf/2), one can follow the following 
ratios when using L15.91_G, hence using a1 in Eq. (38): 

L_15.91 exact 1.6801

L_15.91_G      1.6447 (linearly extrapolated using L10 & a1)
L_15.91_G_cf 1 1.5204 (linearly extrapolated using  L10 & non‐linear a1_cf )
L_15.91_G_cf2 1.5340 (linearly extrapolated using  L10 & linear a1_cf )

Linear L_0.1_cf/L_10_cf =0.0741
L_0.1_cf L_10_cf L_0.1_cf L_10_cf

Using L_15.91_G 0.0802 1.0846 0.0805 1.0854

Using L_15.91_G_cf 1 0.0742 1.0026 0.0744 1.0033

Using L_15.91_G_cf 2 0.0748 1.0115 0.0750 1.0123

Non‐linear _L0.1_cf/L_10_cf =0.074
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 (39) 
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  (40) 

When using L15.91_G_cf defined with a1_cf, the same relationships can be used with a correction factor f: 
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  (42) 

One expects these ratios to be close to 1 and will demonstrate next that their median ratios are indeed close to 1 
when conducting Monte Carlo simulations of this exercise.  

More precisely, 1000 curve-fittings (linear and non-linear) of large databases (of relative lives) have been con-
ducted, each database having been obtained by simulating 100 times 6 first-in-four failures (with random F values) 
for defining 100 times 6 relative lives (via the use of L15.91_G).  

This exercise also will also lead to the derivation of the confidence intervals assigned to all ratios, as done in [2] 
and [3]. 
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Median values and confidence intervals obtained via 1000 Monte Carlo simulations 
Several outputs can be provided, especially when distinguishing how L15.91_G and L15.91_G_cf are defined (using a1, 
a1_cf with the non-linear or linear curve-fitting). Following is one example corresponding to c=2: 

 
Table 6: Results obtained using 1000 Monte Carlo simulations corresponding to c = 2 

In the latter table, the symbol r (in the green cells) represents the left column number ratio, rexact/rcf beside a2_cf/a1_cf 

being for example equal to 2 1

2 _ 1_cf cf

a a
a a . 

One first can notice that most of the relevant median ratios are close to 1, (except the ratio involving L0.1 which are 
slightly biased, for example with the non-linear curve-fitting:  L0.1_cf/L10_cf = 0.076 instead of 0.056, leading to a 
ratio rexact/rcf =0.7368), confirming that the relative live can be used for retrieving useful information about the 
third and fourth reliability parameters. Also, most of the confidence 90% intervals are quite narrow. 

Also, the difference observed using miscellaneous options are minor, so that one decided next to only show the 
results corresponding to the linear curve-fitting (circled in red), which was also the initial attractive point of our 
newly suggested model. 

The following table summarizes the results obtained using two linear curve-fittings (in the respective range F 
<0.01 for Y2 and F > 0.05 for Y1) and four sets (a2, L0.1) corresponding to four values of c: 

 
Table 7: Summary using 1000 Monte Carlo simulations and two linear curve-fittings 

One sees that the median ratios are indeed often close to 1, although slightly biased in some cases. 

Of particular interest for example is the median ratio a2/a2_cf and L0.1/L0.1_cf plotted next versus the ratio a2_cf/a1_cf 
(defined using the median values of a2_cf and a1_cf): 

a1 b1_rel a2 b2_rel F_Transition

1 1.75280728 0.5306 0.28621326 0.04301087

CURVE FITTING NON‐LINEAR

a1/a1_cf a2/a2_cf a2_cf/a1_cf r_exact/r_cf L0.1cf/L10cf r_exact/r_cf a1/a1_cf a2/a2_cf a2_cf/a1_cf r_exact/r_cf L0.1cf/L10cf r_exact/r_cf

Lower_0.05 1.0007 0.8553 0.2662 0.8124 0.0509 0.4693 1.0035 0.7515 0.2970 0.7068 0.0457 0.5208

Median_0.5 1.0870 1.1110 0.5128 1.0348 0.0760 0.7368 1.0638 1.1621 0.4886 1.0859 0.0742 0.7545

Upper_0.95 1.1625 2.2073 0.6531 1.9931 0.1193 1.1005 1.1310 1.8796 0.7507 1.7862 0.1075 1.2264

L0.1/L0.1_cf L10/L10_cf L15.91/L15.91_cf L0.1/L0.1_cf L10/L10_cf L15.91/L15.91_cf

Lower_0.05 0.4718 0.8866 0.9503 0.5165 0.9454 0.9977

Median_0.5 0.7345 0.9383 0.9821 0.7452 0.9871 1.0164

Upper_0.95 1.1026 0.9949 1.0309 1.2107 1.0278 1.0350

L0.1/L0.1_cf L10/L10_cf L15.91/L15.91_cf L0.1/L0.1_cf L10/L10_cf L15.91L15.91_cf

Lower_0.05 0.4476 0.8310 0.8918 0.4897 0.9018 0.9453

Median_0.5 0.7081 0.9019 0.9436 0.7213 0.9496 0.9778

Upper_0.95 1.0893 0.9912 1.0240 1.1874 1.0013 1.0186

L0.1/L0.1_cf L10/L10_cf L15.91/L15.91_cf L0.1/L0.1_cf L10/L10_cf L15.91/L15.91_cf

Lower_0.05 0.4595 0.8635 0.9255 0.5030 0.9208 0.9717

Median_0.5 0.7154 0.9138 0.9564 0.7257 0.9614 0.9899

Upper_0.95 1.0738 0.9689 1.004 1.1791 1.001 1.008

using  a1_cf_linear for defining L15.91_G_cf:

CURVE‐FITTED NON‐LINEAR using L15.91_G CURVE‐FITTED LINEAR using L15.91_G

CURVE‐FITTED NON‐LINEAR using L15.91_G_cf CURVE‐FITTED LINEAR using L15.91_G_cf

CURVE‐FITTED NON‐LINEAR using L15.91_G_cf CURVE‐FITTED LINEAR using L15.91_G_cf

using  a1_cf_non‐linear for defining L15.91_G_cf:

CURVE FITTING LINEAR

EXACT VALUES

a1/a1_cf a2/a2_cf a2_cf/a1_cf r_exact/r_cf L0.1cf/L10cf r_exact/r_cf L0.1/L0.1_cf L10/L10_cf L15.91/L15.91_cf

Lower_0.05 1.0035 0.7515 0.2970 0.7068 0.0457 0.5208 0.5030 0.9208 0.9717

Median_0.5 1.0638 1.1621 0.4886 1.0859 0.0742 0.7545 0.7257 0.9614 0.9899

Upper_0.95 1.1310 1.8796 0.7507 1.7862 0.1075 1.2264 1.1791 1.0010 1.0080

Lower_0.05 1.0080 0.7249 0.1891 0.6761 0.1009 0.7518 0.7441 0.9409 0.9927

Median_0.5 1.0631 1.0810 0.2912 1.0199 0.1333 0.9405 0.9226 0.9797 1.0103

Upper_0.95 1.1276 1.6671 0.4393 1.5708 0.1667 1.2419 1.2131 1.0209 1.0273

Lower_0.05 1.0005 0.5634 0.1512 0.5296 0.1325 0.9733 0.9789 0.9497 0.9989

Median_0.5 1.0569 0.7809 0.2213 0.7394 0.1590 1.1435 1.1293 0.9912 1.0174

Upper_0.95 1.1200 1.1409 0.3089 1.0821 0.1868 1.3724 1.3545 1.0307 1.0350

Lower_0.05 0.9938 0.4008 0.1433 0.3767 0.1362 1.0870 1.0837 0.9503 0.9976

Median_0.5 1.0535 0.5633 0.2063 0.5375 0.1609 1.2622 1.2575 0.9888 1.0146

Upper_0.95 1.1154 0.8149 0.2944 0.7741 0.1869 1.4917 1.4659 1.0336 1.0330

c=4

c=10

c=175

USING 2 LINEAR CURVE‐FITTINGS (F<0.01 & F > 0.05)

c=2
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Fig. 10: Median ratios (full line) & correction factor (dotted lines) versus median a2_cf/a1_cf  
 

A correction factor can be introduced (equal the latter median ratio) and curve-fitted for defining an unbiased or 
best estimate of a2 and L0.1 using: 
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cfcf cf
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

 
    

 

 
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   (43) 

The corrected curve-fitted ratios are then almost unbiased as shown next. The lower and upper bounds have also 
been corrected by the same correction factors and can be easily curve-fitted too. 

 
Fig. 11: Unbiased ratio obtained when using the correction factors  

 

Using 600 points (hence 100 endurance tests with 6 first-in-4 failures), a2 and L0.1 can be correctly estimated with 
an accuracy often smaller than about ± 40%. 

In the case of Fig. 9 for example, the best estimate of L0.1 is obtained using the curve-fitted value of L0.1_cf = 0.0741 
when using Eq. (35) to multiply by a correction factor equal to 0.72 when a2_cf/a1_cf is equal to 0.48, leading to 
a final estimate of L0.1 equal to 0.053 instead of 0.056. 
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Conclusions 
Following some work initiated in [2], a new reliability model is suggested in this paper where the failure proba-
bility F is calculated as a function of the life and 4 parameters: a1, b1, a2 and b2 or: a1, L10, a2 and L0.1 where L10 
and L0.1 are the lives corresponding to F = 0.1 and 0.001 respectively and a1 and a2 are the inverse of the Weibull 
slopes noticed in the large and low F range respectively (with a2 ≤ a1). Two asymptotic linear Weibull models are 
therefore used with a non-linear smooth transition between these asymptotic lines when using Weibull plots. 

For reducing the duration of endurance tests, a first-in-N testing strategy is often used with NR test rigs as described 
in [3] using N=4 and N=6 for example. 

It has been demonstrated that the 6 failures can be analyzed using a standard two-parameter Weibull model for 
estimating the Weibull slope and the interpolated L50 life is then representative of the true L15.91_G life of the group 
of 6 bearings. 

But the 6 failures can also be analyzed using the 18 suspended items and this paper offers an exact calculation of 
F using the inverse beta function, the cumulative probability P, as well as N and NR in a general case. Using P 
=0.5 defines the median value of Fmedian to use for conducting the 2 or 4 parameter Weibull study. The Weibull 
slope and L15.91_G life can then be defined directly, without passing via L50. 

P can also be fixed to 0.05 and 0.95, for defining F0.05 and F0.95 and understanding the 90 % variation range of the 
life using any models. 

Defining a2 and L0.1 at low F values requires having access to a large database containing for example 1000 lives 
(sorted in ascending order). Such a database can be created numerically by simulating randomly 1000 values of F, 
sorted then in ascending order for defining the live corresponding to our four parameter models using fixed set of 
(a1, L10, a2 and L0.1). 

An appropriate non-linear curve-fitting technique is suggested for defining the curve-fitted values of (a1, L10, a2 
and L0.1) that can be compared to the curve-fitted values of (a1 and L10) and (a2 and L0.1) obtained using a simple 
linear curve-fitting in the respective range F > 0.05 and F < 0.01 

This exercise confirmed the possibility of relying on two linear regressions for defining the set of 4 unknowns. 

But having access to a real endurance database containing 1000 points is not realistic, so that one tested the idea 
suggested in [4] of using relative lives. The relative life represents the ratio L/ L15.91_G where L15.91_G is the life of 
the group of 6 bearing for example. 

Using 100 endurance tests leads for example to 600 points to analyze using the non-linear and linear approach. 
The lowest median value of F is then equal to 2.888*10-4 corresponding to the first failure out of 2400 tested 
bearings. The first 23 values of F are then smaller than 0.01, and we will demonstrate that 23 points are sufficient 
for analyzing the life corresponding to low F values. 

Such a database can be obtained experimentally as used in [4] but can also be simulated and studied numerically 
by generating random values of F as done herein. 

Of particular interest are the curve-fitted values of a2_cf and L0.1_cf/L10_cf that can be compared to the exact values 
a2 and L0.1/L10. 

The values of L15.91_G can also be estimated using the 600 relative lives, L10 as reference and the exact slope a1 or 
curve-fitted slope a1_cf, leading to an estimate of L0.1_cf and L0.1/L0.1_cf ratio. 

This ratio, as well as many additional ones are further studied by conducting Monte Carlo simulations, duplicating 
for example 1000 times this exercise (using also miscellaneous sets of (a2, L0.1) for defining the median values of 
these ratios as well as their 90% confidence intervals. 

Median ratios are often close to 1, confirming the possibility of using relative lives for retrieving the 4 parameters 
of our model.  

Results obtained using the non-linear curve-fitting are only slightly more accurate that the ones obtained using two 
simple linear curve-fittings, hence the linear curve-fitting can finally be suggested. 

Some of these ratios may be slightly biased, varying for example as a function of a2_cf/a1_cf, but a correction factor 
has been introduced and curve fitted as a function of a2_cf/a1_cf for a better estimation of a2 and L0.1 defined as a 
function of a2_cf and L0.1_cf and the latter correction factors. 

As a summary, it can be said that the main benefits and novelties of this paper are the following: 

 Exact calculations of F (median values and variation range) are provided using the inverse beta function 
applied to first in N testing strategy, NR test rigs or 100*NR test rigs. 

 A new 4-parameter reliability model, duplicating quite well Rosemann’s model at low and large failure 
rate F, is suggested. 
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 A simple linear curve-fitting can be used for retrieving the third and fourth parameter required for de-
fining the life at low F values. 

 Relative lives can be used for retrieving these four parameters and obtaining results at very low F val-
ues. Satisfactory confidence intervals about these four parameters have been obtained.  

 

Finally, it can be recommended to see the main bearing manufacturers testing and sharing, in the frame of some 

ISO/DIN working committees for example, their relative live results for deriving estimates of 0.1
2

10

&
L

a
L

 
 
 

and 

abandoning the current conservative ISO suggestion 0

10

0.05
L

L

 
 

 
. 
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Appendix 1: Non-linear curve-fitting using the new model 
The new model can be written: 

   

 

   

  

  

2 1 2 1
_ 1 1 1 12

2 1

1 2

2 1 2 1

2
2 2 1

1 2

2

.
. .

1 exp exp( )
1

1 exp exp( )

:

.

1 1 exp exp( ) . 1 exp exp( )

1 1 exp exp( ) . 1 e

i i
cf i i i

i

i

i i

i i

i

b b a a X N
Y b a X b a X

D

X

b b
a a

with

N b b a a X

b b
D X

a a

X



  
     

 
   
  
      

   

  
          

         

      
    

2 2 1
intersection

1 2

2 2

2 2 2
intersection

xp exp( ) exp

1 1 exp exp( ) . 1 exp

1 1 exp exp( ) . 1

i

i

b b
E with E X

a a

X H with H E

X G with G H F





 


  



      

      

(44) 

One will now use Method 1 described in [2], minimizing the sum S2
 (also called Si2), for defining the four un-

knowns, the challenge being to calculate analytically the 4 partial derivatives. 

 22 2
_ exp_

1, 1,

2 min ( 1)i cf i i

i N i N

S Si S Y Y Method

 

          (45) 

 
2

_
1 1 1 2 2 _ exp_

1 1 1
1, 1,

2
_

2 1 1 2 2
1 1 1

1, 1,

2
_

3 1 1 2 2
2 2 2

1,

( , , , ) 2. . 2. . 0

( , , , ) 2. . 2. . 0

( , , , ) 2. . 2. .

cf ii
i i i cf i i

i N i N

cf ii
i i

i N i N

cf ii
i i

i N

dYdSdS
f a b a b S S with S Y Y

da da da

dYdSdS
f a b a b S S

db db db

dYdSdS
f a b a b S S

da da da

 

 



     

   

  

 
 


1,

2
_

4 1 1 2 2
2 2 2

1, 1,

0

( , , , ) 2. . 2. . 0

i N

cf ii
i i

i N i N

dYdSdS
f a b a b S S

db db db



 









 


    




 

        (46) 

Let’s first recall that when calling one of the four unknowns v: 

   exp( ( )
. exp( ( )

d f v df
f v

dv dv
        (47) 

leading to the following successive calculations: 
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   

 

   

 

   

2 2 1
2 1 1 2

1 1 2

1

1 2
1

2

2 1 1 2
2 1

1

1 2
2 1

1 1 2 2

3 3

. . exp

.

. .

.

exp( ).

2. 1 exp( ) . 2. 1 exp( ) .exp( ).

b bdE
E b b a a with E

da a a

dE
E a a

db

dE dE
E b b a a

da da

dE dE
E a a

db db

dH dE
E with v a or b or a or b

dv dv
dG dH dE

E E E
dv dv









 

 
       

  

    

   

   

       

     2 2 3
1 exp exp( ) . 1 exp exp( ) .2. 1 exp( ) .exp( ).i

i i

dv
dD dG dE

X X E E
dv dv dv

               

(48) 

Or: 

     

   

2 23
intersection 2 1 1 2

1

2 13
intersection 1 2

1

2 1

2 1

1 exp exp( ) .2. .exp( ). . .

1 exp exp( ) .2. .exp( ). .

i
i

i
i

i i

i i

dD
X F E E b b a a

da

dD
X F E E a a

db

dD dD

da da

dD dD

db db





       

      

 

 

  (49) 

The next calculated steps are: 

   
1 1 2 2

2

_

_

1

_

1

1 1

. .

1

i i i i
i i

i i i
i i

i

i

i

cf i i

cf i
i

cf i

dN dN dN dN
X X

da db da db

N d N d Dd D ND dv dv
dv D

N
d

dY D

dv dv
dY

add X when calculating
da

dY
add when calculating

db

     

 
  
  

 
 
 





 (50) 

 

The set of 4 equations (Eq. 46) can now be solved using an iterative Newton-Raphson approach: 
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1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2
1 1 2 2

1 1 2 2 1 1 2 2
1 1 2

( , , , ) ( , , , ) . . . . 0

:

. . . . ( , , , ) 1 4

j j j j
j j

j j j j
j

df df df df
f a a b b a a b b f a b a b a b a b

da db da db

or

df df df df
a b a b f a b a b for j to

da db da dc

                 

         

(51) 

The partial derivatives dfj/dv are calculated using: 

1 1 1 2 2 1 1 1 2 2

1 1

1 1 1 2 2 1 1 1 2 2

1 1

1 1 2 2 2 1 1 2 2 2

2 2

1 1 2 2 2 1 1 2 2 2

2

( , , , ) ( , , , )

2.

( , , , ) ( , , , )

2.

( , , , ) ( , , , )

2.

( , , , ) ( , , , )

2

j j j

j j j

j j j

j j j

df f a da b a b f a da b a b

da da

df f a b db a b f a b db a b

db db

df f a b a da b f a b a da b

da da

df f a b a b db f a b a b db

db

  


  


  


  


2.db

 (52) 
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Appendix 2: Study of the relative life ratio 

At large F 
Using exact values and the linear asymptotic trend: 

  

  

 

1 1

1 1

1 1

1 10 1 0.10 0.10

1

ln( )

large : 1 .

( 0.10 ) : ln ln 1 & :

ln( ) .

ln( ) .

: ln( ) . ln ln 1 0.10

: 1 . ln(

ref ref ref ref ref

ref ref

ref ref

ref re

Y L

At F Y a X b

At F F for example X X F L L

L a X b

b L a X

For example b L a X with X

So in general Y a X X L


 

     

 

 

    

  

 

     

   

1 0.1 10

15.91 15.91 1 0.1591 1 0.1591 0.1 10

15.91 1 0.1591 10 1 0.1591 0.1

)

: 1 . ln( )

ln . ln( ) . ln( )

.exp . .exp .

f

ref ref

ref ref

or in our case Y a X X L

Y L a X X L or a X X L

L L a X X L a X X

  

     

       

 (53) 

When using the relative life: 

   
 

15.91
15.91

1 1 0.1591

1 0.1591

1 ln 1

. ln( ) . ln( )

.

rel

ref ref ref ref

L
Y Y Y

L

a X X L a X X L

a X X

 
   

 

     

 

  (54) 

 1 0.1591 1 1_

1_ 1 0.1591

1 . .

.

rel rel

rel ref

Y a X X a X b

with b a X irrespective of L

   

 
  (55) 

 

Using curve-fitted values and the linear asymptotic trend: 

_ 1_ 1_ _1 .rel cf cf rel cfY a X b     to compare to 1 1_ 1_ 1 0.15911 . .rel rel relY a X b with b a X     (56) 

 
   

 

10

10_10 15.91
10_ 10_ _

10_10_ 10_ _

15.91_

1 1_ 0.1 1_ 1_ _

exp 1
exp 1 1

exp 1

exp .

rel

rel rel cf
cfcf rel cf

G

cf rel rel cf

L
YL L

Y Y
LL Y

L

a a X b b

   

     

  (57) 

In the latter relationship, it has been implicitly assumed that the linear relationships can be used and that L15.91_G 

can be extrapolated using L10 as reference and the exact slope a1 (as explained in the core of this paper, Eq. (38)). 
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   1_
1_

1

1 1_ 1_ 1_ _10 10
0.1

10 _ 10 _ 1_ 1_

exp .
cf

cfa
cf rel rel cf

cf cf cf cf

a a b bL L
X

L L a a

      
                

  (58) 

Using the non-linear model: 
The latter two relationships can be extrapolated to the use of the non-linear model, leading to: 

 
   

10

10_10 15.91
10_ 10_ _

10_10_ 10_ _

15.91_

exp
exp

exp

rel
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cfcf rel cf

G

L
YL L

Y Y
LL Y

L

      (59) 

1_
1_

1

10_ 10_ _10 10

10_ 10_ 1_

exp
cf

cfa
rel rel cf

cf cf cf

Y YL L

L L a


     

           
     

  (60) 

 

At low F: 

Using exact values and the asymptotic linear trend: 

    

2 2

2 0.1

2 0.1 2 0.001 0.001

: 2 .

using 0.001

ln . ln ln 1 0.001

At low F Y a X b

b defined L corresponding to F for example

b L a X with X

 



    

 (61) 

When using the relative life: 

   

   

2 2 1 0.1591
15.91

2 2 1 0.1591 0.1 10

0.1 10

2 ln . . ln

. . ln
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ref ref

L
Y a X b a X X L

L

a X b a X X L

if X X and L L

 
      

 
    

 

   (62) 

       
2 2 _

2 _ 2 1 0.1591 2 1 0.1591 0.1 10

2 .

. ln . ln

rel rel

rel ref ref

Y a X b

b b a X X L b a X X L

 

       
 (63) 

 

Using curve-fitted values and the asymptotic linear trend: 

 

_ 2 _ 2 _ _2 .rel cf cf rel cfY a X b     to compare to 2 2 _2 .rel relY a X b   (64) 

   
0.1

0.1 15.91
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0.1_0.1_

15.91_

exp .cf rel rel cf
cfcf
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L

         (65) 
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2 2 _ 2 _ 2 _ _0.1 0.1
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cf cf cf cf

a a b bL L
X

L L a a

      
                

  (66) 
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Using the non-linear model: 

0.1

0.1 15.91
0.1 0.1_

0.1_0.1_

15.91_

exp cf
cfcf

G

L

L L
Y Y

LL
L

       (67) 

2 _
2 _

1

0.1 0.1_0.1 0.1

0.1_ 0.1_ 2_

exp
cf

cfa
cf

cf cf cf

Y YL L

L L a


     

                
  (68) 

 

Ratio L0.1/L10 when using the linear model 

 
Of main interest to users is also the ratio L0.1/L10: 
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  (69) 

Note that the curve-fitted ratio L0.1_cf/L10_cf is independent about how L15.91_G  has been defined (using a1 or a1_cf, 
see previous discussion in this paper)   
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